Graphical Abstract

Previous Issue

JMSJ, 2019, Vol. 97, No. 2 (April)

Articles

Ose (2019)

Ose, T., 2019: Characteristics of future changes in summertime East Asian monthly precipitation in MRI-AGCM global warming experiments. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-018.
Early Online ReleaseGraphical Abstract

Plain Language Summary: Global warming experiments using three different 60 km-mesh atmospheric global circulation models are studied to characterize future changes in monthly East Asian precipitation for June to August. Wetting and drying effects due to changes in mean vertical motion are related adiabatically to the projected modification of 500 hPa horizontal atmospheric circulation, which is characterized by two cyclonic circulation anomalies extending over the eastern Eurasian Continent (C1) and the western North Pacific Ocean (C2) for each month (Figure 1).

Highlights:

 

JMSJ, 2019, Vol. 97, No. 1 (February)

Invited Review Articles

Murakami (2019)

Murakami, M., 2019: Inner structures of snow clouds over the Sea of Japan observed by instrumented aircraft: A review. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-009.
Early Online ReleaseGraphical Abstract

Plain Language Summary: Snow clouds, which bring heavy snowfall to populated coastal plains, have been extensively studied by analyzing data acquired by aerological, meteorological satellite, and radar observations, or conducting numerical simulations. Because of the difficulties with accessing cloud systems over the ocean, however, few in situ observation data have been available, and up until the middle 1990s, many problems remained unsolved or their analysis and simulation results had not been validated. Here we review knowledge gained from instrumented aircraft observations, made from the middle 1990s through the early 2000s.

Highlights:

Articles

Fang et al (2019)

Fang, Y., B. Li, and X. Liu, 2019: Predictability and prediction skill of the boreal summer intra-seasonal oscillation in BCC_CSM model. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-019.
Early Online ReleaseGraphical Abstract

Plain Language Summary: This study examines the theoretically estimated predictability and practical prediction skill of the he East Asia and western North Pacific boreal summer intra-seasonal oscillation (BSISO) in the Beijing Climate Center Climate System Model (BCC_CSM2.0). Results show that the prediction skill and predictability of BSISO in BCC_CSM2.0 are 14 and 24-28 days respectively. The model shows a strong dependence on initial/target BSISO phase and amplitude.

Highlights:

Yamaguchi et al (2019)

Yamaguchi, J., Y. Kanno, G. Chen, and T. Iwasaki, 2019: Cold air mass analysis of the record-breaking cold surge event over East Asia in January 2016. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-015.
Early Online ReleaseGraphical Abstract

Plain Language Summary: An extreme cold surge event occurred in January 2016 was studied by means of the isentropic cold airmass analysis method. We traced the cold air masses below a potential temperature of 280K more than a week, and found that a clump of thick cold air masses gathered on the eastern Siberia, moved to Lake Baikal, and then spilled southeastward over East Asia.

Highlights:

Maejima et al (2019)

Maejima, Y., T. Miyoshi, M. Kunii, H. Seko, and K. Sato, 2019: Impact of dense and frequent surface observations on 1-minute-update severe rainstorm prediction: A simulation study. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-014.
Early Online ReleaseGraphical Abstract

Plain Language Summary: This study aims to investigate the potential impact of surface observations with a high spatial and temporal density on a local heavy rainstorm case that caused five fatalities in Kobe, Japan on July 28, 2008. The control experiment (CTRL) assimilates only the phased array weather radar (PAWR) data, and two sensitivity experiments are performed to investigate the impact of additional surface observations obtained every minute at 8 (S8) and 167 (S167) stations in Kobe. The results show that the dense and frequent surface observations have a significant positive impact on the analyses and forecasts of the local heavy rainstorm (Fig. 1).

Highlights:

Vitanova et al (2019)

Vitanova, L. L., H. Kusaka, V. Q. Doan, and A. Nishi, 2019: Numerical study of the urban heat island in Sendai City with potential natural vegetation and the 1850s and 2000s land-use data. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-013.
Early Online ReleaseGraphical Abstract

Plain Language Summary: This study investigates the impact of urbanization on surface air temperature and the urban heat island (UHI) for Sendai City during the 150-year period. We use the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution and three land-use datasets, one for potential natural vegetation (PNV) data, the other two for realistic land-use data (the 1850s and 2000s). The results from this article may be beneficial for better urban planning of Sendai City because it was damaged by the Great East Japan Earthquake of 2011.

Highlights:

Yamazaki et al (2019)

Yamazaki, A., M. Honda, and H. Kawase, 2019: Regional snowfall distributions in a Japan-Sea side area of Japan associated with jet variability and blocking. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-012.
Early Online ReleaseGraphical Abstract

Plain Language Summary: This study investigated the relationships between well-known dominant regional snowfall distributions in the Niigata area, intraseasonal jet variability over Eurasia, and atmospheric blocking. Snowfalls in plain (P-type), mountainous (M-type), and the whole (PM-type) areas of Niigata were controlled by quasi-stationary Rossby waves along the subpolar, subtropical, and both jets, respectively. Blocking over the Siberian regions enhanced cold air outbreaks intruding toward Japan and contributed the P-, M-, and PM-type snowfalls.

Highlights:

Jin et al (2019)

Jin, H., Y. Jin, and J. D. Doyle, 2019: An evaluation of COAMPS-TC real-time forecasts for Super Typhoon Nepartak (2016). J. Meteor. Soc. Japan, 97, Special Edition on Tropical Cyclones in 2015–2016, https://doi.org/10.2151/jmsj.2019-011.
Early Online ReleaseGraphical Abstract

Plain Language Summary: Typhoon Nepartak was a category 5 tropical cyclone of 2016 and had significant societal impacts. It went through a rapid intensification (RI), with an increase of maximum wind speed of 51 m s−1 and a decrease of minimum sea level pressure of 74 hPa in 42 h. The real-time forecast from the Coupled Ocean/Atmosphere Mesoscale Prediction System – Tropical Cyclone (COAMPS-TC), starting from 1200 UTC 3 July, predicted the track and intensity reasonably well for Super Typhoon Nepartak and captured the storm’s RI process.

Highlights:

Inatsu et al (2019)

Inatsu, M., H. Suzuki, and M. Kajino, 2019: Relative risk assessment for hypothetical radioactivity emission at a snow climate site. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-010.
Early Online ReleaseGraphical Abstract

Plain Language Summary: We assessed relative risk for hypothetical radioactivity emission from the Tomari Nuclear Power Plant in Hokkaido, Japan. With a brand-new risk evaluation method, we found that the risk was higher in the eastern part of the target area owing to the westerly flow.

Highlights:

Zhu et al (2019)

Zhu, X.-S., and H. Yu, 2019: Environmental influences on the intensity and configuration of tropical cyclone concentric eyewalls in the western North Pacific. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-008.
Early Online ReleaseGraphical Abstract

Plain Language Summary: The observed intensity changes of tropical cyclones (TCs) with concentric eyewalls (CEs) often varied case from case. This study establishes a relationship between intensity changes and CE patterns, and also shows the environmental influences on the configuration of different CE patterns. The results may be beneficial for forecasting intensity fluctuations of a TC with CE from the current environmental configurations.

Highlights:

Kitoh et al (2019)

Kitoh, A., and H. Endo, 2019: Future changes in precipitation extremes associated with tropical cyclones projected by large-ensemble simulations. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-007.
Early Online ReleaseGraphical Abstract

Plain Language Summary: Previous studies projected future changes of precipitation extremes such as an annual maximum one-day precipitation total (Rx1d) itself. Thanks to large-ensemble simulations, we can now investigate projected future changes of extremes in once-in-a-10-year and once-in-a-100-year rare events. It is found that such a rare event will increase in a region extending from Hawaii to the south of Japan, implying an increasing risk of rare heavier rainfall events there by global warming.

Highlights:

Oda et al (2019)

Oda, M., and H. Kanehisa, 2019: A simple model of the resonant interaction between vortex Rossby and gravity waves. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-006.
Early Online ReleaseGraphical Abstract

Plain Language Summary: We show a simple conceptual model of the resonant interaction in a typhoon-like vortex between vortex Rossby waves (VRWs) and gravity waves (GWs), which are caused by the VRWs. The proposed conceptual model is based onthe buoyancy-vorticity formulation (BV-thinking), and is different from that for the barotropic and baroclinic instabilities based on PV interactions (PV-thinking).
We consider disturbances of the first baroclinic mode on a basic barotropic vortex. The disturbance vertical vorticity ζ of the VRW in the central region has a large amplitude on the upper and lower levels. The disturbance buoyancy b and radial vorticity η of the GW in the outer region have a large amplitude on the middle level.

Highlights:

Fukushima et al (2019)

Fukushima, H., T. Yazaki, T. Hirota, Y. Iwata, A. Wajima, and A. Yokota, 2019: Factors and mechanisms affecting the air temperature distribution on a clear winter night in a snow-covered mesoscale plain. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-005.
Early Online ReleaseGraphical Abstract

Plain Language Summary: To clarify how the low temperatures in winter nights form, we analyzed the effects of topography and boundary-layer wind on the temperature distribution and vertical profiles of boundary-layer atmospheric conditions of the Tokachi region for a winter night using numerical simulations. From the distribution of vapor mixing ratio, we revealed unique processes of the development of surface temperature distribution influenced by inversion layer formation and katabatic drainage flow (Figures 1 and 2).

Highlights:

Zhang et al (2019)

Zhang, S., G. Ren, Y. Ren, and X. Sun, 2019: Comparison of surface air temperature between observation and reanalysis data over eastern China for the last 100 years. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-004.
Early Online ReleaseGraphical Abstract

Plain Language Summary: This study aimed to improve understanding of the differences in surface air temperature data between homogenized observations and reanalysis (20CR and ERA20C) since the beginning of the 20th century and to address the reanalysis data error.

Highlights:

Nayak et al (2019)

Nayak, S., and T. Takemi, 2019: Dynamical downscaling of Typhoon Lionrock (2016) for assessing the resulting hazards under global warming. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-003.
Early Online ReleaseGraphical Abstract

Plain Language Summary: Recent studies have revealed that typhoons will be stronger and more powerful in a future warmer climate and be a threat to lives and properties. The present study attempted to perform dynamical downscaling simulations of Typhoon Lionrock (2016) at 1-km grid resolution by using the Weather Research and Forecasting (WRF) model to discuss the track and intensity of this typhoon and associated precipitation amount in the target region after landfall in present climate and under Pseudo Global Warming (PGW) conditions.

Highlights:

Ding et al (2019)

Ding, J., Y. Chen, Y. Wang, and X. Xu, 2019: The Southeasterly Gale in Tianshan Grand Canyon in Xinjiang, China: A case study. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-002.
Early Online ReleaseGraphical Abstract

Plain Language Summary: On 8 June 2013, a strong southeasterly gale attacked Urumchi, the provincial capital of Xinjiang, China, giving rise to great damage. This work studies the formation of the gale incident according to observations and numerical simulation, suggesting the importance of topographic forcing of Tianshan Mountains.

Highlights:

Mashiko (2019)

Mashiko, W., 2019: A statistical study of wind gusts in Japan using surface observations. J. Meteor. Soc. Japan, 97, https://doi.org/10.2151/jmsj.2019-001.
Early Online ReleaseGraphical Abstract

Plain Language Summary: There is still a lot of uncertainty regarding the statistical characteristics of wind gusts. This study clarified the frequency and spatiotemporal distribution of wind gusts throughout Japan by statistically analyzing the surface observational data of the last 16 years. The frequency of wind gusts with more than 25 m s–1 averaged across all observatories is 0.97 per year, which is four or five orders of magnitude higher than the tornado encounter probability in Japan.

Highlights: