EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is
DOI:10.2151/jmsj.2022-006

J-STAGE Advance published date: October 4th, 2021

The final manuscript after publication will replace the preliminary version at the above DOI once it is available.
A New Perspective of Pacific–Japan Pattern: Estimated Percentage of the Cases Triggered by Rossby Wave Breaking

Kazuto TAKEMURA
Graduate School of Science, Kyoto University, Kyoto, Japan
Climate Prediction Division, Japan Meteorological Agency, Tokyo, Japan

and

Hitoshi MUKOUGAWA
Graduate School of Science, Kyoto University, Kyoto, Japan

May 28, 2021
1st Revision on July 23, 2021
2nd Revision on September 2, 2021

1) Corresponding author: Kazuto Takemura, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, JAPAN.
Email: takemura.kazuto@kugi.kyoto-u.ac.jp
Tel: +81-75-xxxx-xxxx
Fax: +81-75-xxxx-xxxx
Abstract

This study quantitatively examined a relative importance of Rossby wave breaking (RWB) east of Japan to a formation of the Pacific–Japan (PJ) pattern compared with that of tropical atmospheric and oceanographic variabilities. Firstly, cases of the positive and negative PJ patterns are classified into those with and without the RWB occurrence. The result of the classification indicates that the cases of positive PJ pattern triggered by the RWB account for approximately 20% of the whole cases of positive PJ pattern. The number of positive PJ cases with the RWB further accounts for approximately 80% of those in the cases associated with the RWB. Results of a lag composite analysis and the related Q-vector diagnosis for the cases of positive PJ pattern with the presence of RWB show that the RWB east of Japan promotes the formation of the PJ pattern through the southwestward intrusion of high PV air mass toward the subtropical western North Pacific (WNP) and the consequent dynamically induced enhanced convection over the region, consistent with results of previous studies. The composite for the cases of negative PJ pattern accompanied by the RWB, by contrast, indicates that the RWB-related upper-tropospheric zonally-elongated anomalous circulation and basin-wide sea surface temperature (SST) warming over the Indian Ocean can contribute suppressed convective activities over the subtropical WNP and the consequent formation of negative PJ pattern even though the RWB occurs. The composite for the cases of positive and negative PJ patterns with the absence of RWB further indicates that the convective activities over the subtropical WNP move northwestward with time, causing the
formation of PJ pattern. The formation of PJ pattern with the absence of RWB are also closely associated with tropical SST and phase of the boreal summer intra-seasonal oscillation, illuminating “pure” tropical impacts on the formation of PJ pattern.

Keywords teleconnection; wave breaking; Asian monsoon; convective rain; Pacific high
1. Introduction

Enhanced (suppressed) convection over the tropical western North Pacific (WNP) east of the Philippines is well known to be accompanied by anomalous cyclonic (anticyclonic) circulation near the Philippines and anomalous anticyclonic (cyclonic) circulation over Japan in the lower troposphere (Nitta 1987; Huang 1990). This teleconnection pattern is referred to as the Pacific–Japan (PJ) pattern (Nitta 1987). The lower-level southwest–northeast-oriented dipole anomalies with the phase of anomalous anticyclonic (cyclonic) circulation over Japan, which are hereafter referred to as the positive (negative) PJ pattern, can contribute to anomalous hot (cool) summer climates near Japan (Lu and Dong 2001; Wakabayashi and Kawamura 2004). Formations of the positive PJ pattern are closely associated with large-scale atmospheric and oceanographic variations such as active phases of the Madden-Julian Oscillation (MJO; Madden and Julian 1971) propagating around Southeast Asia (Molinari and Vollaro 2012, 2017), warm pools of sea surface temperatures (SSTs) over the tropical WNP (Nitta 1987; Huang 1990; Zhu et al. 2020), negative phases of El Niño Southern Oscillation (ENSO; i.e., La Niña conditions) (Molinari and Vollaro 2017), and tropical cyclone activities (Kawamura and Ogasawara 2006; Yamada and Kawamura 2007; Ko and Liu 2016; Zhu et al. 2020). The formations of the negative PJ pattern, by contrast, are associated with preceding basin-wide SST warming over the tropical Indian Ocean associated with post-El Niño events (Xie et al. 2009; Wu et al. 2010; Kosaka et al. 2013) and local negative SST anomalies (e.g., Wang et al. 2000; Wu et al.
Li et al. (2020) further showed that modulated periodicity of intra-seasonal oscillation (ISO) due to the phase of ENSO can regulate the periodicity of the PJ pattern, which indicates a collaborated effect of the ENSO and ISV on the formation of PJ pattern. These results indicate that the formation of PJ pattern is closely tied to the tropical atmospheric and oceanographic variabilities.

Meanwhile, Takemura and Mukougawa (2020a) (hereafter referred to as TM20) revealed from a result of lag composite analysis that Rossby wave breaking (RWB) east of Japan, which is preceded by Rossby wave packets propagating along the Asian jet (Lu et al. 2002; Enomoto et al. 2003; Enomoto 2004), can excite the formation of positive PJ pattern via the upper-level southwestward intrusion of high potential vorticity (PV) air mass and the consequent enhanced convection over the subtropical WNP. TM20 also indicated from a Q-vector diagnosis (e.g., Hoskins et al. 1978; Holton 1992) that the enhanced convection over the subtropical WNP is promoted by dynamically induced ascent associated with the upper-level southward intrusion of high-PV air mass. Their result provides a new perspective that the formation of the PJ pattern can be excited not only by tropical atmospheric and oceanographic variabilities but also by the extra-tropical ones. Takemura et al. (2020) showed a significant increase of RWB frequency over the region from Japan to the east in boreal summer during La Niña years. They further proposed the associated mechanism of the increased RWB frequency over the region that an enhanced Walker circulation and the consequent northward shift of the Asian jet due to a La Niña condition can provide a
favorable condition of the frequent RWB and positive PJ pattern. This process represents a remote influence of the tropical oceanographic and atmospheric variabilities on the RWB frequency through a modulated Asian jet. Although the above-mentioned results suggest a non-negligible role of the extra-tropical atmospheric variability in the formation of the positive PJ pattern, what percentage of the positive PJ pattern the RWB can trigger has not been revealed. An estimation for a proportion of the PJ pattern caused by the RWB will enable us to elucidate the relative importance of the extra-tropical atmospheric variability to the formation of the PJ pattern compared to that of the tropical one. The cases of PJ pattern without the association of the RWB may further illuminate tropical impacts such as the anomalous SST and the ISO, particularly the boreal summer ISO (BSISO; e.g., Kikuchi et al. 2012; Lee et al. 2013).

According to the aforementioned perspective, the present study quantifies estimated ratios of the positive and negative PJ pattern with and without the RWB east of Japan, and conducts lag composite analyses for the classified cases of the PJ pattern. This approach will highlight the dynamical process for the formation of the PJ pattern shown in TM20, and provide us further understanding for various types of the PJ pattern.

The paper is arranged as follows. Section 2 describes the dataset and analysis methods. Section 3 briefly presents the climatological relationship between periods for the extracted cases of the PJ pattern and Baiu seasons over mainland Japan. Section 4 classifies the cases of positive and negative PJ patterns into those with and without the RWB occurrence,
and quantifies an estimated percentage of the positive PJ pattern associated with the RWB. Sections 5, 6, 7, and 8 present results of the lag composite analyses for the classified four types of the cases and discusses features of anomalous atmospheric and oceanographic conditions promoting the formation of PJ pattern. Section 9 finally estimates a ratio of the positive PJ pattern that is mainly triggered by the RWB due to the Rossby wave propagation along the Asian jet. Section 10 summarizes main findings in this study.

2. Data and methods

To analyze atmospheric circulation, we used monthly and daily mean datasets of the Japanese 55-year reanalysis (JRA-55) for June–September (JJAS) during a 61-yr period from 1958 to 2018, with a horizontal resolution of 1.25° and 37 pressure levels from 1000 to 1 hPa (Kobayashi et al. 2015). We also used the daily mean dataset of COBE-SST (Ishii et al. 2005) for JJA during the 61-yr period, with a resolution of 1°, to analyze the SST. Here the anomaly is defined as a departure from the climatology, which is obtained as a 60-day low-pass (Lanczos; Duchon 1979) filtered 30-yr daily averages from 1981 to 2010. To extract low-frequency components including the quasi-stationary Rossby wave, a 5-day running mean is applied to the daily data. We applied a horizontal smoothing filter to relative vorticity fields using a triangular truncation retaining \(N = 24 \) wavenumbers (T24) to exclude disturbances with horizontal scales smaller than synoptic eddies. To simply exclude warming trends of anomalous SSTs in the tropics, we defined SST deviations as the anomalous SSTs subtracted by an area average between 25°S and 25°N. We assessed statistical
significances of the composite anomalies and deviations using a two-tailed Student’s t test.

The variable t is defined as $t = \bar{x}' / \sqrt{\sigma^2 / (N - 1)}$, where \bar{x}' is the composite anomalies and deviations, σ is the standard deviation, N is the number of cases. The variable t obeys a Student’s t-distribution with $N - 1$ degrees of freedom.

To infer convective activities in tropics, we used convective precipitation of the JRA-55, which is derived from a cumulus convection scheme in the reanalysis. To examine the validity to use the convective precipitation, we compared the climatology of the convective precipitation and the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997). The distribution of the convective precipitation in the subtropical WNP is quite similar to that of the CMAP (not shown), indicating the validity to use the convective precipitation.

The propagation of quasi-stationary Rossby wave packets is analyzed using the wave activity flux (WAF) defined by Takaya and Nakamura (2001). The horizontal WAF is defined as follows:

\[
W = \frac{1}{2|U|} \left(\bar{u}(\psi'_y^2 - \psi'_x \psi'_{xy}) + \bar{v}(\psi'_x \psi'_y - \psi'_y \psi'_{xy}) + \bar{v}(\psi'_y^2 - \psi'_y \psi'_{yy}) \right),
\]

(1)

where u is the zonal wind, v is the meridional wind, U is the climatological horizontal wind vector, and ψ is the geostrophic stream function at a reference latitude of $\phi_0 = 40^\circ$N. The reference latitude is selected based on a central latitude of the climatological Asian jet in midsummer (not shown). The overbars (primes) denote the climatology (anomaly from the climatology). The subscripts x and y denote the partial derivatives with respect to longitude and latitude, respectively.
To assess the dynamical relationship between the southwestward intrusion of a high PV air mass associated with the RWB and enhanced convection over the subtropical WNP, vertical motion induced under the quasi-geostrophic balance, which is hereafter referred to as dynamically induced ascent, is diagnosed using the Q-vectors defined in Eq. (2b). The conventional diagnostic equation for the vertical motion (i.e., the ω equation) is written as follows:

$$
\left(\nabla^2 + \frac{f_0^2}{\sigma} \frac{\partial^2}{\partial p^2} \right) \omega_{dyn} \approx \frac{f_0}{\sigma} \frac{\partial}{\partial p} \left[v_g \cdot \nabla \left(\frac{1}{f_0} \nabla^2 \Phi + f \right) \right] + \frac{1}{\sigma} \nabla^2 \left[v_g \cdot \nabla \left(-\frac{\partial \Phi}{\partial p} \right) \right] \quad (2a-1)
$$

$$
= -\frac{2}{\sigma} \nabla \cdot Q + \frac{f_0}{\sigma} \beta \frac{\partial v_g}{\partial p}, \quad (2a-2)
$$

$$
Q \equiv \left(-\frac{R}{p} \frac{\partial v_g}{\partial x} \nabla T, -\frac{R}{p} \frac{\partial v_g}{\partial y} \nabla T \right), \quad (2b)
$$

where ω_{dyn} is the dynamically induced ascent represented by vertical p-velocity, f_0 is the reference Coriolis parameter at the latitude ϕ_0, f is the Coriolis parameter, β is the meridional gradient of the Coriolis parameter, $v_g = (u_g, v_g)$ is the geostrophic horizontal wind vector, Φ is the geopotential, and T is the temperature, respectively. $\sigma \equiv RT_0 p^{-1} \ln \theta_0/\partial p$ is the static stability, with the gas constant R and the basic-state potential temperature θ_0, derived from the area-averaged temperature T_0 poleward of 20°N. Eq. (2a-1) indicates that the vertical motion is balanced with the vertical derivatives of vorticity advection (the first term of the RHS) and thermal advection (the second term of the RHS). Convergence and divergence of the Q-vectors, which are proportional to the first term of Eq. (2a-2), correspond to dynamically induced ascent and descent, respectively. From the ω equation in Eq. (2a), ω_{dyn} is approximately expressed as follows:
\[
\left(\nabla^2 + \frac{\partial^2}{\partial \sigma^2} \right) \omega_{\text{dyn}} \cong -\left[\frac{2}{\sigma} \nabla \cdot \mathbf{Q} \right]. \tag{3}
\]

Anomalous \(\omega_{\text{dyn}} \) \((\omega'_{\text{dyn}}) \) is calculated, applying a relaxation method to solve Poisson’s equation of Eq. (3), with meridional boundary conditions at 5°N and the North Pole and vertical ones at pressure levels of the bottom (1000 hPa) and top (1 hPa) given by \(\omega'_{\text{dyn}} = 0 \), according to Takemura and Mukougawa (2020b).

To assess the upper-level high PV intrusion toward the subtropical WNP caused by the RWB, we conducted an absolute vorticity budget analysis. In the pressure coordinate, the anomalous absolute vorticity advection by horizontal winds in the primitive equation is expressed as follows:

\[
\left[\frac{\partial \xi'}{\partial t} \right]_{\text{adv}} \cong -\mathbf{v}' \cdot \nabla \bar{\xi} - \bar{\mathbf{v}} \cdot \nabla \xi' \tag{4a}
\]

\[
= -u' \frac{\partial \xi'}{\partial x} - v' \frac{\partial \xi'}{\partial y} - \bar{u} \frac{\partial \xi'}{\partial x} - \bar{v} \frac{\partial \xi'}{\partial y}, \tag{4b}
\]

where \(\mathbf{v} = (u, v) \) is the horizontal wind vector, and \(\zeta \) is the relative vorticity, \(\xi (= \zeta + f) \) is the absolute vorticity, respectively. The overbars and primes are defined as in Eq. (1). The terms A and B indicate contributions of the anomalous wind and the terms C and D indicate those of the climatological wind to the anomalous vorticity tendency, respectively. The term B includes the \(\beta \) effect. This study shows only the terms B and D because the effect of absolute vorticity advection by zonal winds is smaller than that by meridional winds (figure not shown).

To extract the PJ pattern, we applied an empirical orthogonal function (EOF) analysis to
850-hPa relative vorticity between [0–60°N, 100–160°E] (a region shown in Fig. 1) for the period of July–August from 1958 to 2018. Although this is based on the method of Kosaka and Nakamura (2011), Kosaka et al. (2013), and Srinivas et al. (2018) who utilized the monthly mean, the present study used the 5-day running mean to analyze the sub-monthly atmospheric variability associated with the PJ pattern. Figures 1a and 1b shows the first and second modes of the EOF pattern normalized by their standard deviations of principal components (PCs) during the period of July–August from 1958 to 2018, which are hereafter referred to as EOF1 and EOF2, respectively. The variance fractions explained by the EOF1 and EOF2 are 21.8% and 16.2%, respectively. The EOF1 and EOF2 clearly represent meridional wave trains with a phase difference of 90°, and the EOF1 pattern well corresponds to the PJ pattern. The EOF2 pattern, by contrast, is quite similar to the Mariana–Bonin (MB) pattern defined by Machimura et al. (2016). Hereafter PJ index defined by the daily PC1 scores is used to identify the PJ pattern. Figure 1c presents a power spectrum of the daily PJ index in July–August during a 61-yr period from 1958 to 2018. The 61-yr average of spectrum of the PJ index (black thick line) has a modest peak at 20–40 days, exhibiting the dominant intra-seasonal variability. Figure 1d further presents an interannual timeseries of the July–August mean PJ indices during the 61-yr period. The monthly mean PJ indices show large interannual variability, consistent with Kawamura et al. (1996) and Yang et al. (2010).

Cases of PJ pattern with smaller PJ indices are excluded when two peaks of the PJ index
are detected within 10 days to prevent overlapping between periods of two cases in the lag composite analysis. To conduct the lag composite analysis, 116 and 114 cases of positive and negative PJ patterns are extracted (red and blue circles in Figs. 2a and 2b) with the PJ indices larger than a threshold of +2 and smaller than that of −2. Here the threshold value of 2 for the PJ index is defined to extract many strong cases enough to accomplish the composite analysis. Numbers of extracted PJ patterns when the threshold value of PJ index is slightly altered from 2 are shown in Table 1. The number of cases is almost the same when the threshold value is 1.5, while the number of cases drastically decreases when the threshold value is 2.5. A central date of the case of PJ pattern is defined as “day 0” in the lag composite analysis. The cases of positive (negative) PJ pattern are hereafter referred to as PJ+ (PJ−) cases, which have a phase of cyclonic (anticyclonic) circulation anomalies northeast of the Philippines and anticyclonic (cyclonic) ones near Japan, respectively. The composite signals of Rossby wave trains along the Asian jet will apt to become vague because of phase inconsistency among the wave trains. To represent the composite activity of the Rossby wave trains, we calculated the composite of 200-hPa anomalous kinetic energy derived from anomalous zonal and meridional winds.

To represent whether the RWB east of Japan occurs or not in the PJ+ and PJ− cases, the RWB index is defined as a difference in the area averages of potential temperature (unit: K) on the dynamical tropopause defined by two potential vorticity units (PVUs) between [30–45°N, 150–170°E] (red box in Fig. 3) and [15–30°N, 150–170°E] (red dashed box in Fig. 3).
These regions to calculate the RWB index is based on TM20 (Fig. 10d in their paper). A positive RWB index indicates an occurrence of the RWB with reversal of the meridional gradient of 2-PVU-surface potential temperature (Pelly and Hoskins 2003) east of Japan. Hereafter the PJ+ (PJ−) cases with the RWB index greater than 0 K (i.e., a blocked flow) and less than 0 K (i.e., a zonal flow) are classified into WB/PJ+ (WB/PJ−) and ZN/PJ+ (ZN/PJ−) cases, respectively.

3. Relationship between cases of PJ pattern and Baiu period

To grasp climatological features for the period of the extracted PJ pattern and its association with seasonal transitions from early- to mid-summer, this section briefly presents a correspondence between the central dates (i.e., day 0) of the extracted PJ+ and PJ− cases and Baiu period over mainland Japan. The Baiu is a rainy season in early summer, which is climatologically experienced by most parts in Japan. Green bars shown in Fig. 2 indicate the Baiu period over Kanto/Koshin district in Japan except for 1993, when the Baiu season did not withdraw associated with a cold and unseasonable summer season. The dataset to specify the Baiu period is available in the Japan Meteorological Agency (JMA)’s website. Note that the Baiu period is operationally specified by JMA, according to the seasonal transition of the atmospheric circulation and weather over each region in Japan. Most of the PJ+ cases (red circles in Fig. 2a) are identified after the Baiu period or immediately before the post-Baiu season, except for several years such as 1974, 2006, and 2016. This feature
implies that the PJ+ cases are associated with hot conditions near Japan in boreal summer (Wakabayashi and Kawamura 2004) and withdrawals of the Baiu season (Suzuki and Hoskins 2009). By contrast, the PJ− cases (blue circles in Fig. 2b) are identified not only during the boreal summer season but also during the extended Baiu season in July, consistent with the prolonged Baiu and unseasonable weather in the boreal summer season (Nitta 1987; Lu and Dong 2001).

4. Classification of extracted PJ cases using RWB index

Figure 4 shows a scatter diagram of the PJ index on day 0 and the RWB index on day −2 for the extracted PJ+ and PJ− cases. Here the RWB index on day −2 is used according to the result of TM20, who showed from a lag composite analysis of the RWB cases that the amplitude of positive PJ pattern attains its maximum two days after the peak of RWB (Figs. 10b and 10c in their paper). A number of the WB/PJ+ cases (31 cases; red closed circles), which are the PJ+ cases associated with the RWB, is much larger than that of the WB/PJ− cases (9 cases; blue closed circles), which are the PJ− cases accompanied by the RWB. The number of the WB/PJ+ cases thus account for approximately 80% of the number of the PJ cases associated with the RWB (i.e., red and blue closed circles). Approximately 65% of the WB/PJ+ cases occur in August, which corresponds to midsummer near Japan. A histogram of the RWB index for the PJ+ and PJ− cases shown on the right of the scatter diagram in Fig. 4 further indicates that the RWB indices for the PJ+ cases are larger than
those for the PJ– cases. The averaged RWB index for the PJ+ cases is significantly larger than that for the PJ– cases at a confidence level of 99%, indicating that the PJ+ cases are more frequently accompanied by the RWB. The significant asymmetry between the PJ+ and PJ– cases with the presence of RWB indicates that the RWB east of Japan favors the PJ+ cases, consistent with the result of TM20. By contrast, a number of the ZN/PJ+ cases (85 cases; red opened circles), which are the PJ+ cases with the absence of RWB, is smaller than that of the ZN/PJ– cases (105 cases; blue opened circles), which are the PJ– cases with the absence of RWB.

Furthermore, the number of WB/PJ+ cases account for approximately 30% of that in the whole PJ+ cases (i.e., red closed and opened circles), suggesting that a percentage of the PJ+ cases accompanied by the RWB cannot be ignored and that the RWB is one of the factors for the formation of the positive PJ pattern. The number and estimated proportions of the PJ+ and PJ– cases with and without the RWB are similar even if the date to evaluate the RWB index is altered from day −3 to day 0, as shown in Table 2. Note that the WB/PJ+ case may include not only the cases which the RWB promotes the formation of positive PJ pattern but also those in which the positive PJ pattern conversely causes the RWB-related upper-level anticyclonic anomaly to the east of Japan. The proportion of the PJ+ cases triggered by the RWB to the entire WB/PJ+ cases will be estimated in Section 9 based on vertically-averaged WAF.
5. Lag composite analysis of the PJ cases

This section shows results of lag composite analyses for the four types of PJ cases defined in Sections 2 and 4 to examine anomalous atmospheric circulations. The composites for the WB/PJ+, WB/PJ−, ZN/PJ+, and ZN/PJ− cases are shown in Subsections 5.1, 5.2, 5.3, and 5.4, respectively.

5.1. WB/PJ+ case

Figure 5 shows the composite of the upper- and lower-tropospheric vorticity anomalies, 360-K PV and anomalous convective precipitation on days −6, −4, −2, 0 for the 31 WB/PJ+ case. The existence of dots in Figs. 5a and 5b along the Asian jet over mid-latitude Eurasia indicates that the Rossby wave propagation in the upper troposphere is enhanced during a period from day −6 to day −4, with significant vorticity anomalies over there (contours in Figs. 5a and 5d). The wave energy accumulates east of Japan near the Asian jet exit region and causes the RWB over the region from day −4 to day −2 (Figs. 5d and 5g). The direction of the Rossby wave propagation east of Japan is southeastward (vectors in Figs. 5a, 5d and 5g). On the other hand, the Rossby waves propagate along the Asian jet over the regions with dots in Fig. 5 where the activity of the Rossby waves is enhanced. These features imply that the Rossby waves propagate eastward through the Asian jet waveguide with refracting surfaces (e.g., Hoskins and Ambrizzi 1993). The RWB is accompanied by an amplified anomalous anticyclone east of Japan and an anomalous cyclone to the south in the upper
troposphere (Figs. 5d and 5g). In the same period, the PV at 360 K east of Japan clearly presents an “inverse-S” shaped overturning associated with the occurrence of RWB over the region, with a northeastward intrusion of low PV air mass and a southwestward intrusion of high PV air mass toward the subtropical WNP, respectively (contours in Figs. 5e and 5h).

The southwestward intruding high PV air mass is accompanied by a rapid enhancement of convective activities over the subtropical WNP near a latitudinal band of 20°N after day –4 (color shadings in Figs. 5e, 5h, and 5k).

In the lower troposphere, southwest–northeast-oriented dipole anomalous vorticities are significantly enhanced over the region from the subtropical WNP to the east of Japan after day –2 (Figs. 5i and 5l) associated with the enhanced convection over the subtropical WNP. The dipole anomalies are accompanied by an anomalous cyclonic circulation south of Japan and an anomalous anticyclonic circulation east of Japan (Figs. 5i and 5l), corresponding to the formation of positive PJ pattern. In the upper troposphere, the Rossby wave propagation over Eurasia along the Asian jet becomes obscure on day 0 (dots in Fig. 5j), with no significant vorticity anomalies over mid-latitude Eurasia (contours in Fig. 5j). The wave propagation, by contrast, is significantly enhanced over the mid-latitude North Pacific, exhibiting the equivalent barotropic structure (Figs. 5j and 5l), which is one of the essential structures of the PJ pattern (Kosaka and Nakamura 2006). The abovementioned results of the composite analysis for the WB/PJ+ case are consistent with TM20, also supporting their result.
To assess an impact of the southwestward intruding high PV air mass toward the subtropical WNP and the enhanced convection over the region, the composite of anomalous \(Q \)-vectors and \(\omega'_{\text{dyn}} \) at 500 hPa on day 0 for the WB/PJ+ cases are shown in Fig. 6a. The mid-tropospheric anomalous \(Q \)-vector convergence and the associated negative \(\omega'_{\text{dyn}} \) centered at 20°N, 140°E are clearly seen east of the Philippines, indicating the dynamically induced anomalous ascent over the region. The mid-tropospheric dynamically induced anomalous ascent is seen to the southwest of the high-PV air mass associated with the RWB, contributing to the rapidly enhanced convection over the subtropical WNP (Figs. 5h and 5k).

Here a correlation analysis for the WB/PJ+ cases is conducted to reverify a relationship between the dynamically induced ascent accompanied by the RWB, the enhanced convection over the subtropical WNP, and the formation of the PJ pattern as shown by TM20. Figure 7a presents a scatter diagram between \(-\omega'_{\text{dyn}}\) at 500 hPa and the convective precipitation averaged over the region A (green box in Fig. 3) on day 0 for the WB/PJ+ case. The relationship between the dynamically induced anomalous ascent and the enhanced convection over the subtropical WNP is seen with the correlation coefficient of +0.54. Figure 7b further presents the scatter diagram between the convective precipitation averaged over the region A and the PJ index on day 0. The enhanced convection over the subtropical WNP and the amplitude of the positive PJ pattern is also correlated with the correlation coefficient of +0.52. These correlation coefficients are significant at a confidence level of 99%, although
only about 25–30% of the precipitation (PJ index) variation is explained by ω^{dyn} (precipitation) variation. These results shown in this subsection indicate that the positive PJ pattern in the WB/PJ+ case, which account for approximately 30% of all the PJ+ cases (Fig. 4), is associated with the RWB east of Japan.

5.2. WB/PJ− case

The WB/PJ− cases indicate that the negative PJ pattern is formed even though the RWB occurs east of Japan, inconsistent with the result of TM20. Although the number and percentage of the WB/PJ− cases are quite smaller than those of the WB/PJ+ cases, features of their composite should be examined to further assess the dynamical process proposed by TM20. Figure 8 shows the composite of the upper- and lower-tropospheric vorticity anomalies, 360-K PV and anomalous convective precipitation on days −6, −4, −2, 0 for the 9 WB/PJ− cases. Note that the composite fields exhibit scattered features because of the small sample size (i.e., 9 cases). Although the Rossby waves propagating along the Asian jet are seen from day −6 to day −4 (dots in Figs. 8a and 8d), the associated upper-tropospheric vorticity anomalies are not significant in contrast to those in the WB/PJ+ cases (contours in Figs. 8a and 8d). The upper-tropospheric Rossby waves, by contrast, propagate eastward along the polar-front jet from day −4 to day −2, accompanied by the significant vorticity anomalies over northern Eurasia (Figs. 8d and 8g). The wave packets subsequently propagate southward over the region from Eastern Siberia into the central Pacific to the east
of 160°E, and causes the RWB east of Japan on day −2 (vectors in Fig. 8g). The RWB is accompanied by a zonally-elongated amplified anomalous anticyclone east of Japan (Figs. 8g and 8j), whose horizontal structure is quite different from that in the WB/PJ+ case (Figs. 5g and 5j). The zonally-elongated anomalous vorticities in the upper troposphere correspond to the above-mentioned southward propagation of the Rossby wave packets from northern Eurasia (vectors in Fig. 8g). A center of the upper-tropospheric anomalous cyclones to the south of Japan in this case locates in the further east side apart from the subtropical WNP (Figs. 8d and 8g), compared to that in the WB/PJ+ case (Figs. 5d and 5g). The eastward shift of upper-level anomalous cyclone is associated with the southward propagating Rossby wave packets toward the central Pacific. The PV at 360 K east of Japan clearly shows the “inverse-S” shaped overturning associated with the occurrence of RWB over the region, with an eastward intrusion of the low PV air mass north of 30°N and a westward intrusion of the high PV air mass south of 30°N, respectively (contours in Figs. 8e and 8h). Even though the high PV air mass clearly intrudes westward toward the subtropical WNP associated with the RWB, the rapidly enhanced convection over the region is not seen (color shadings in Figs. 8h and 8k). On the contrary, the suppressed convection is significantly seen over the subtropical WNP and persists during the period from day −6 to day 0 (color shadings in the middle panels of Fig. 8). The absence of convection over the subtropical WNP is consistent with the Rossby wave propagation toward the central Pacific away from the subtropical WNP in the upper troposphere (Figs. 8d and 8g).
In the lower troposphere, southwest–northeast-oriented dipole anomalous vorticities are significantly enhanced over the region from the subtropical WNP to the vicinity of Japan after day –4 (Figs. 8i and 8l) associated with the suppressed convection over the subtropical WNP.

The dipole anomalies are accompanied by an anomalous anticyclonic circulation south of Japan and an anomalous cyclonic circulation near Japan (Figs. 8i and 8l), corresponding to the formation of negative PJ pattern. The anticyclonic circulation anomalies south of Japan is also seen before day –4 (Fig. 8c), which is associated with the persistent suppressed convection over the subtropical WNP (Fig. 8b). Possible factors of the suppressed convection over the subtropical WNP with the occurrence of RWB will be discussed later in Sections 6 and 8.

The impact of the westward intruding high PV air mass toward the subtropical WNP on the dynamically induced vertical motion for the WB/PJ– case is assessed, using the composite of anomalous Q-vectors and ω'_dyn at 500 hPa on day 0 (Fig. 6b). The dynamically induced anomalous ascent is not seen over the subtropical WNP along the latitudinal band of 20°N where the suppressed convection persists (Figs. 8k and 6b). The Q-vector diagnosis indicates that there is no impact of the westward intruding high PV air mass associated with the RWB on the convective activities over the subtropical WNP and the consequent formation of a PJ pattern for the WB/PJ– case. The dynamically induced anomalous ascent, by contrast, is widely seen over the region from the Yellow sea to the Bering sea through mainland Japan (Fig. 6b). The anomalous ascent is seen south of a zonally-elongated
significant cyclonic circulation anomaly centered around northern Japan in the upper troposphere (Fig. 8j).

To assess a difference of the upper-level Rossby wave propagation to the east of Japan between the WB/PJ– and WB/PJ+ cases, we compare the meridional component of the upper-level WAF averaged over region B (purple colored box in Fig. 3). Figure 9 presents the histogram of the area-averaged meridional component of WAF at 200-hPa for both the cases. The southward wave propagation to the east of Japan in the WB/PJ– case (blue boxes in Fig. 9) is enhanced compared with that in the WB/PJ+ case (red bars in Fig. 9), with a significant difference in their averages at a confidence level of 95% (not shown). This result also implies that the upper-level enhanced Rossby wave propagation toward the central Pacific away from the subtropical WNP can affect the absence of convection over the subtropical WNP in the WB/PJ– case.

5.3. ZN/PJ+ case

The ZN/PJ+ case represents the PJ+ cases with the absence of RWB east of Japan, and is expected to extract “pure” (i.e., without atmospheric variabilities in mid-latitudes) impacts of tropical atmospheric circulations on the formation of positive PJ pattern. Figure 10 shows the composite of the upper- and lower-tropospheric vorticity anomalies, 360-K PV and anomalous convective precipitation on days −6, −4, −2, 0 for the 85 ZN/PJ+ cases. The upper-tropospheric anomalous vorticities over Eurasia are scattered, and the wave train along the Asian jet is not seen from day −6 to day −2 (Figs. 10a, 10d, and 10g). The
overturning of PV distribution at 360 K is not seen east of Japan associated with the zonal flow in the upper troposphere after day -4 (contours in Fig. 10e, 10h, and 10k), indicating the absence of RWB east of Japan.

Apart from the upper-tropospheric anomalous circulation, an enhanced convection is significantly seen over a latitudinal band of 15°N east of the Philippines on day -6 and moves northwestward until day 0 (color shadings in the middle panels of Fig. 10). In the lower troposphere, an anomalous cyclonic circulation also moves northwestward and is amplified from day -6 to day 0 (right panels of Fig. 10) associated with the northwestward moving enhanced convection. These northwestward-moving enhanced convective activities and the associated lower-tropospheric anomalous cyclonic circulation over the subtropical WNP correspond to the result of Zhu et al. (2020), who showed a bi-weekly time-scale variability of the PJ pattern. Meanwhile the anomalous anticyclonic circulation near Japan is enhanced in the lower troposphere after day -4 (Figs. 10f, 10i, and 10l), associated with the enhanced cyclonic circulation anomaly over the subtropical WNP. These lower-tropospheric meridional dipole vorticity anomalies indicate the formation of positive PJ pattern with the absence of RWB (Fig. 10h). The meridional dipole anomalies are also significant in both the lower and upper troposphere with a phase difference of 90° (Figs. 10j and 10l), exhibiting the northward-tilting vertical structure of PJ pattern (Kosaka and Nakamura 2006).

5.4. ZN/PJ– case
Figure 11 shows the composite of the upper- and lower-tropospheric vorticity anomalies, 360-K PV and anomalous convective precipitation on days –6, –4, –2, 0 for the 105 ZN/PJ–case, which represents the PJ– case with the absence of RWB east of Japan. The significant anomalous vorticities over Eurasia in the upper troposphere are not seen during the period (left panels of Fig. 11). By contrast, the upper-tropospheric meridional dipole anomalous vorticities with an anomalous cyclonic circulation east of Japan and an anomalous anticyclonic one to the south are significantly seen during the period. The upper-level dipole anomalies correspond to the enhanced zonal flow near the climatological Asian jet exit region and the consequent weakened mid-Pacific trough. Although the weak overturning of PV at 360 K east of Japan is seen near the dateline during the period (contours in middle panels of Fig. 11), the intrusion of high PV air mass toward the subtropical WNP is not clear (middle panels of Fig. 11).

The suppressed convection over the subtropical WNP is significantly seen and expands northwestward from day –4 to day 0 (color shadings in Figs. 11e, 11h, and 11k). In the lower troposphere, an anomalous anticyclonic circulation is enhanced during the period (Figs. 11f, 11i, and 11l) associated with the suppressed convection over the subtropical WNP. The northwestward-expanding suppressed convection and the associated enhanced anomalous anticyclonic circulation over the subtropical WNP in the lower troposphere also correspond to the result of Zhu et al. (2020), as the ZN/PJ+ cases. Meanwhile a zonally-elongated anomalous cyclonic circulation is enhanced near Japan in the lower troposphere from day
–2 to day 0 (Figs. 11i and 11l), coincident with the enhanced anticyclonic circulation anomaly to the south, indicating the formation of a negative PJ pattern. The meridional dipole vorticity anomalies also exhibit the northward-tilting vertical structure in the troposphere (Figs. 11j and 11l), as the ZN/PJ+ cases. An anomalous anticyclonic circulation is further seen over the sea of Okhotsk in the lower and upper troposphere from day –2 to day 0 (Figs. 11g, 11i, 11j, and 11l), exhibiting a meridional tripolar pattern including the negative PJ pattern (Hirota and Takahashi 2012). This anomalous anticyclonic circulation is associated with an intensified Okhotsk high, which can cause unseasonable summer weather in Japan (e.g., Nakamura and Fukamachi 2004).

6. Tropical impacts on PJ cases with and without RWB

This section overviews impacts of anomalous large-scale atmospheric circulations and oceanographic conditions in the tropics on the formation of the four types of the PJ cases described in Section 5. Figure 12 shows the SST deviation averaged during the period from day –10 to day –6 when the SST is insusceptible to evaporation resulting from surface wind (i.e., the wind-evaporation-SST feedback; Xie and Philander 1994) associated with the convective activities during the period before and after day 0. Figure 13 further shows anomalous 200-hPa velocity potential, convective precipitation, and 925-hPa horizontal wind on day 0.

For the WB/PJ+ case, the SST shows significantly warm and cold deviations over the
western and central–eastern equatorial Pacific, respectively, indicating that La Niña like conditions are favorable for the RWB occurrence and the consequent formation of positive PJ pattern (Fig. 12a). These SST deviations are consistent with the result of Takemura et al. (2020), who indicated the significant increase of the RWB frequency near Japan in July and August during La Niña years. By contrast, there is no significant warm SST deviation over the western part of the subtropical WNP at the latitudinal band of 20°N that can contribute to the enhanced convection over the region and the consequent formation of positive PJ pattern (Figs. 5k and 5l), consistent with the result of TM20. The upper-tropospheric wave-like pattern of anomalous convergence and divergence from Southeast Asia to the southeast of Japan (contour in Fig. 13a) well corresponds to the suppressed and enhanced convection over the region (shading in Fig. 13a), respectively. This meridional pattern of anomalous convective activities is suggestive of the BSISO, which is characterized as the northward propagating active and inactive phases of convective activities over the Asian monsoon region. However, their relevance to the BSISO is not seen as shown later in Section 7.

For the WB/PJ– case, the cold SST deviation over the central to eastern equatorial Pacific is clearly seen (Fig. 12b) as with the WB/PJ+ cases, also consistent with the result of Takemura et al. (2020). Meanwhile there is no significant SST deviations over the subtropical WNP that can contribute to the suppressed convection over the region and the formation of negative PJ pattern (Figs. 8k and 8l). On the other hand, the significant warm SST deviations are seen over a wide area in the northern part of the equatorial Indian Ocean, corresponding
to the basin-wide SST warming over the region (Xie et al. 2009, 2016; Kosaka et al. 2013).

The active and inactive phases of convection accompanied by the upper-tropospheric coherent large-scale anomalous divergence and convergence over the Indian Ocean and the WNP on day 0 (contour in Fig. 13b) are clearly seen. The upper-tropospheric convergence over the WNP, accompanied by the suppressed convection (shading in Fig. 12b), is closely related to the formation of negative PJ pattern (Fig. 8l). By contrast, enhanced convective activities over northern and eastern parts of the Indian Ocean with the scattered structure (shading in Fig. 13b) are consistent with the upper-tropospheric anomalous divergence (contour in Fig. 13b). The lower-tropospheric horizontal wind exhibits the southwestward to westward anomalous flow from the subtropical WNP toward the northern Indian Ocean (vector in Fig. 13b) where the warm SST deviation and the enhanced convection is located (Fig. 12b and shading in Fig. 13b). These atmospheric features well correspond to the Indian Ocean capacitor effect proposed by Xie et al. (2009, 2016), and the impact on the formation of negative PJ pattern (Fig. 8l; e.g., Kosaka et al. 2013). The above-mentioned results suggest that the remote influence of the basin-wide SST warming over the Indian Ocean may partly cancel the impact of the RWB east of Japan on the formation of positive PJ pattern for the WB/PJ– cases as described in Subsection 5.2.

For the ZN/PJ+ case, there is no significant SST deviation over the equatorial Pacific (Fig. 12c), except over the eastern Pacific where a meridionally anti-symmetric SST with positive (negative) deviations to the north (south) of the equator. The meridional gradient of SST
deviation is reminiscent of a positive phase of Pacific meridional mode of the SST (PMM; Chiang and Vimont 2004). A relationship between the PMM-like SST deviation and the enhanced convection over the subtropical WNP (shading in Fig. 10k) is consistent with the result of Takaya (2019), who indicated a relationship between the positive phase of PMM and an enhanced activity of tropical cyclones in the WNP in summer 2018. A relationship between the positive phase of PMM and the formation of positive PJ pattern is also suggested by Wakamatsu et al. (2019) in their SST sensitivity experiments for summer 2018, consistent with the PMM-like SST deviation for the ZN/PJ+ case. These results are suggestive of a remote influence from the PMM-like SST deviation on the enhanced convection over the subtropical WNP and the consequent formation of positive PJ pattern.

The warm SST deviation is also significantly seen east of the Philippines (Fig. 12c), indicating a local impact of the SST on the enhanced convection over the region and the consequent formation of positive PJ pattern (Figs. 10k and 10l), consistent with the results of Nitta (1987) and Huang (1990). The upper-tropospheric large-scale anomalous divergence and convergence are significantly seen over the WNP and the northern Maritime Continent (contour in Fig. 13c) associated with the enhanced and suppressed convection over the region (shading in Fig. 13c). This feature corresponds to the BSISO as shown later in Section 7.

For the ZN/PJ– case, the SST shows the significantly cold and warm deviations over the western and central–eastern equatorial Pacific, respectively (Fig. 12d), implying that El Niño
conditions are favorable for the formation of negative PJ pattern (Fig. 11l). The El Niño conditions are also favorable for the enhanced zonal flow condition near the climatological Asian jet exit region with the absence of RWB in the ZN/PJ– case (Takemura et al. 2020). The cold SST deviation is further significantly seen east of the Philippines (Fig. 12d), corresponding to the suppressed convection over the region and the consequent formation of negative PJ pattern (Figs. 11k and 11l). This relationship between the local cold SST deviation and the formation of negative PJ pattern is consistent with the result of Wu et al. (2010). In the upper troposphere, the large-scale anomalous divergence and convergence are significantly seen, with the active phase of convection over the Indian Ocean and the tropical central Pacific and the inactive phase of convection around the Philippines (contour in Fig. 13d). This anomalous divergence pattern is also quite similar to atmospheric responses to the anomalous SST in the El Niño conditions (Fig. 12d). The lower-tropospheric wind exhibits the southwestward anomalous flow from the subtropical WNP toward the northern Indian Ocean (vector in Fig. 13d) where the upper-tropospheric anomalous divergence is located (contour in Fig. 13d). This suggests that the active phase of convection over the Indian Ocean can remotely influence the suppressed convection over the subtropical WNP and the consequent formation of negative PJ pattern (Fig. 11l).

7. Clarified relationship between BSISO and PJ cases without RWB

This section assesses the relationship between the BSISO and the four types of PJ cases
based on the time evolution of the lag composite. Figure 14 shows time–latitude cross-sections for the composite of anomalous convective precipitation averaged between 80°E and 140°E where the active Asian monsoon circulation is climatologically seen.

For the WB/PJ+ and WB/PJ− cases, there is no signal of the northward propagation of the anomalous convection (Figs. 14a and 14b). On the contrary, the quasi-stationary convective activities are significantly seen for the two cases (Figs. 14a and 14b), particularly for the WB/PJ+ cases with the significantly suppressed convection at a latitudinal band of 10°N during the whole period and the significantly enhanced convection north 15°N from day −1 to day +4 (Fig. 14a). These results indicate the inactive BSISO under the La Niña like SST anomaly (Figs. 12a and 12b), consistent with Liu et al. (2016) who showed that the La Niña (El Niño) condition can suppress (enhance) the BSISO over the WNP. For the ZN/PJ+ and ZN/PJ− cases, by contrast, the northward propagation of anomalous convection is significantly seen (Figs. 14c and 14d), indicating the influence of BSISO on the enhanced and suppressed convection at a latitudinal band of 20°N associated with the positive and negative PJ patterns, respectively. This is also consistent with the above-mentioned relationship between the ENSO and the BSISO (Liu et al. 2016). Here red and blue dashed lines in Figs. 14c and 14d represent northward propagating intra-seasonal and bi-week oscillations with periods of 40 and 15 days for a meridional wavelength of 30°, respectively. The active and inactive phases of the convection propagate northward almost along the red dashed lines, highlighting a close relationship with the BSISO for the ZN/PJ+ and ZN/PJ−
cases. A part of the active (inactive) convection for the ZN/PJ+ and ZN/PJ– cases also seems to propagate northward almost along the blue dashed lines, corresponding to the bi-week time-scale ISO (Zhu et al. 2020) as described in Subsections 5.3 and 5.4. It is noteworthy that the significant relationship between the formation of PJ pattern and the BSISO is clearly identified by excluding the PJ cases with the presence of RWB.

8. Morphological difference of RWB and its impact on dynamically induced ascent

This section discusses a possible factor for the suppressed convection over the subtropical WNP with the presence of RWB for the WB/PJ– case as described in Subsection 5.2. As mentioned in Sections 5.2 and 6, it is presumed that the upper-level Rossby wave propagation and the basin-wide warming over the Indian Ocean are essential factors for the suppressed convection over the subtropical WNP and the consequent negative PJ pattern for the WB/PJ– case. By contrast, TM20 indicated that the upper-tropospheric absolute vorticity advection associated with the RWB-related intrusion of high PV air mass is primarily important for the dynamically induced ascent over the subtropical WNP. It is expected from their result and the Q-vector diagnosis for the WB/PJ– cases (Fig. 6b) that different characteristics of the upper-level vorticity advection due to the RWB between the WB/PJ+ and WB/PJ– cases can influence the occurrence of the dynamically induced anomalous ascent.

Figure 15 shows 200-hPa absolute vorticity advection by the meridional wind v in the
terms B+D (top), B (middle), and D (bottom) in Eq. (4) for the WB/PJ+ (left panels) and WB/PJ− (right panels) cases. For the WB/PJ+ case, the term B+D (shading in Fig. 15a) clearly shows positive vorticity tendencies centered at 20°N, 140°E east of the Philippines, corresponding to the dynamically induced anomalous ascent (Fig. 6a) to the southwest of high-PV air mass associated with the RWB (contours in Figs. 5k and 15a). The term B (shading in Fig. 15b) also shows positive vorticity tendencies at a latitudinal band of 15°N, which partly explain the terms B+D in that region (shading in Fig. 15a). The positive vorticity tendencies explained by the term B correspond to the southward wind anomalies (vector in Fig. 15b) partly associated with the upper-tropospheric anomalous cyclonic circulation resulting from the RWB (dashed contour in Fig. 15a). The term D (shading in Fig. 15c) also shows positive vorticity tendencies immediately south of the upper-level RWB-related anomalous cyclonic circulation (dashed contour in Fig. 15c) downstream of the climatological southward wind (vector in Fig. 15c). The above-mentioned results of the vorticity budget analysis indicate that the upper-tropospheric anomalous absolute vorticity advection resulting from the RWB contributes to the dynamically induced anomalous ascent and the consequent enhanced convection over the subtropical WNP, consistent with the result of TM20.

For the WB/PJ− case, on the contrary, the positive vorticity tendencies in the term B+D (shading in Fig. 15d) is not clearly seen east of the Philippines, where the ω'_{dyn} at 500 hPa is also absent (Fig. 6b). The term B (shading in Fig. 15e) shows negative vorticity tendencies
east of the Philippines, which are caused by weak northward wind anomalies (vector in Fig. 15e) associated with the upper-tropospheric zonally-elongated anomalous cyclonic circulation resulting from the RWB (dashed contour in Fig. 15d). The term D (shading in Fig. 15f) shows positive vorticity tendencies at a latitudinal band of 15°N immediately south of the zonally-elongated anomalous cyclonic circulation (dashed contour in Fig. 15f) downstream of the climatological southward wind (vector in Fig. 15f). The terms B and D thus show the opposite-signed absolute vorticity tendencies east of the Philippines, resulting in the small amplitude of total (i.e., the terms B+D) vorticity tendencies over the region (shading in Fig. 15d).

Here a relationship between the above-mentioned upper-tropospheric vorticity tendencies and the dynamically induced ascent over the subtropical WNP is quantitatively assessed for the WB/PJ+ and WB/PJ− cases. Figure 16 shows a scatter diagram between the absolute vorticity advection by the meridional wind at 200 hPa in the terms B+D in Eq. (4) and $-\omega_{\text{dyn}}'$ at 500 hPa over the region A (green box in Fig. 3) on day 0 for the WB/PJ+ (red opened circles) and WB/PJ− (blue opened circles) cases. The scatter diagram indicates a close relationship between the upper-tropospheric anomalous absolute vorticity advection and the dynamically induced anomalous ascent over the subtropical WNP with significant positive correlation coefficients of $R_p=+0.57$, $R_m=+0.71$, and $R=+0.62$ for the WB/PJ+, WB/PJ− cases, and both the cases at a confidence level of more than 95%, respectively. The areal average of anomalous absolute vorticity advection at 200 hPa over the region A for the
The above-mentioned results indicate that a morphological difference in the RWB-related upper-tropospheric anomalous circulation between the WB/PJ+ and WB/PJ– cases (Figs. 5j and 8j) can affect the dynamically induced anomalous ascent over the subtropical WNP (Figs. 5a and 5b) through the difference in the upper-tropospheric absolute vorticity advection over the region (Figs. 15a and 15d). The zonally-elongated upper-tropospheric anomalous circulation for the WB/PJ– case, which is unfavorable for the dynamically induced enhanced convection over the subtropical WNP, is associated with the southward propagation of the Rossby wave packets along the polar-front jet (vectors in Fig. 8g), as described in Subsection 5.2.

9. Estimated ratio of positive PJ pattern triggered by RWB

As discussed in Section 4, the WB/PJ+ case may include not only cases triggered by the RWB, which are accompanied by the Rossby wave propagation along the Asian jet, but also ones in which the positive PJ pattern conversely causes the RWB. In this section, we try to estimate a proportion of the WB/PJ+ cases accompanied by the Rossby wave propagation along the Asian jet to all the WB/PJ+ cases using the following two types of the vertically-averaged WAFs: one is a vertically-averaged (500–100 hPa) zonal component of WAF averaged over the light-green shaded region in Fig. 3 (WAFX), representing activity of the
upper-level eastward wave propagation along the Asian jet toward the RWB region; The
other is a vertically-averaged (850–500 hPa) meridional component of WAF averaged over
the light-blue shaded region in Fig. 3 (WAFy), representing activity of the lower-level
northward wave propagation toward the RWB region associated with the PJ pattern. Here
the vertical average is weighted by air mass.

Figure 17a presents daily timeseries of composites of WAFx and WAFy during a period
from day –7 to day +1 for the WB/PJ+ case. The composite of WAFx (green line in Fig. 17a)
exceeds that of WAFy (blue line in Fig. 17b) particularly before day –1, when an
enhancement of the RWB-related anomalous anticyclone is seen east of Japan (Figs. 5a,
5d, and 5g). Figure 17b further shows a scatter diagram of WAFx and WAFy on day –2,
when the RWB attains its peak. From Fig. 17b, it is found that a number of the WB/PJ+
cases in which WAFx exceeds WAFy is 21, indicating that approximately 70% of all the
WB/PJ+ cases (31 cases) is mainly caused by the upper-level Rossby wave propagation
along the Asian jet. This percentage is almost the same even if the regions averaging WAFx
and WAFy are slightly altered (color-shaded region in Fig. 3), suggesting robustness of the
estimated percentage. The magnitude of southward component of WAF toward the RWB-
related anomalous anticyclone in the upper troposphere (Fig. 5g) is smaller than that of
WAFx on day –2 (not shown). The above-mentioned comparison indicates a primary
contribution of the eastward Rossby wave propagation to the enhanced RWB. Hence, the
WB/PJ+ cases triggered by the RWB can account for approximately 20% of the total PJ+
cases (116 cases).

10. Conclusions

This study assessed the role of the RWB east of Japan in the formation of the PJ pattern compared with that of tropical atmospheric and oceanographic variabilities, using the extracted PJ+ (total in 116) and PJ– (total in 114) cases. The climatological relationship between the central dates (day 0) of the extracted PJ cases and the Baiu period over Kanto/Koshin district in Japan was firstly examined. The results implied that the PJ+ cases are associated with the withdrawals of Baiu season and the abnormally hot conditions near Japan in boreal summer, while the PJ– cases are associated with the prolonged Baiu and the unseasonable weather in boreal summer.

Based on the scatter diagram between the PJ index on day 0 for the extracted PJ cases and the RWB index on day –2, this study classified the PJ cases into the four types of PJ patterns as follows: the PJ+ cases accompanied by the RWB (the WB/PJ+ case), the PJ– cases accompanied by the RWB (the WB/PJ– case), the PJ+ cases with the absence of RWB (the ZN/PJ+ case), and the PJ– cases with the absence of RWB (the ZN/PJ– case).

Approximately 80% of the cases associated with the RWB was categorized as the WB/PJ+ case, indicating that the RWB east of Japan favors the PJ+ cases. The WB/PJ+ cases accounted for approximately 30% of the whole PJ+ cases. By contrast, numbers of the ZN/PJ+ and ZN/PJ– cases are much larger than those of the WB/PJ+ and WB/PJ– cases
(Fig. 4 and Table 2), indicating a primary contribution of tropical variabilities to the formation of PJ pattern as shown by many previous studies.

Then the lag composite analyses for the four types of PJ cases were conducted to examine atmospheric and oceanographic features promoting the formation of PJ pattern. For the WB/PJ+ case, the anticyclonic RWB east of Japan followed by the Rossby wave propagation along the Asian jet caused the positive PJ pattern through the upper-level southwestward intrusion of high PV air mass toward the subtropical WNP and the consequent enhanced convection over the region. The Q-vector diagnosis and the associated correlation analysis indicated that the dynamically induced anomalous ascent over the subtropical WNP due to the RWB east of Japan can promote the enhanced convection over the region and the consequent formation of positive PJ pattern. These results indicated that the WB/PJ+ case can be triggered by the RWB east of Japan.

For the WB/PJ– case, the zonally-elongated anticyclonic RWB east of Japan was seen followed by the Rossby wave propagation along the polar-front jet. The horizontal structure of the zonally-elongated upper-tropospheric anomalous circulation resulting from the RWB was quite different from that of the WB/PJ+ case. Even though the westward intrusion of high PV air mass toward the subtropical WNP was clearly seen, the suppressed convection was rather significantly seen over the region with the absence of dynamically induced anomalous ascent, contributing to the formation of negative PJ pattern. The significant warm SST deviation was seen over the northern part of the equatorial Indian Ocean, which was
accompanied by the upper-tropospheric large-scale anomalous divergence over the Indian Ocean. The lower-tropospheric winds further showed the southwestward to westward anomalous flow from the subtropical WNP toward the northern Indian Ocean, corresponding to the Indian Ocean capacitor effect and its contribution to the formation of negative PJ pattern. The above-mentioned Indian Ocean capacitor effect and the morphological difference in the upper-level anomalous circulation including the RWB could play roles in the suppressed convection over the subtropical WNP and the consequent formation of negative PJ pattern with the presence of RWB through the different characteristics of the upper-tropospheric anomalous absolute vorticity advection in the WB/PJ– case compared with that in the WB/PJ+ case.

For the ZN/PJ+ case, the Rossby wave propagation over Eurasia was not seen. The northwestward moving enhanced convection and the associated lower-tropospheric anomalous cyclonic circulation were significantly seen over the subtropical WNP, which promoted the formation of positive PJ pattern. The warm SST deviation east of the Philippines was consistent with the enhanced convection over the region and the consequent formation of positive PJ pattern. The northward propagating enhanced convection over the subtropical WNP was further closely associated with the active phase of BSISO, indicating the impact of the BSISO on the formation of positive PJ pattern.

For the ZN/PJ– case, as the ZN/PJ+ case, the Rossby wave propagation over Eurasia was not seen and the zonal flow was dominated near the Asian jet exit region. The
northwestward moving suppressed convection and the consequent lower-tropospheric anomalous anticyclonic circulation was significantly seen over the subtropical WNP, which promoted the formation of negative PJ pattern. The cold SST deviation east of the Philippines corresponded to the suppressed convection over the region and the formation of negative PJ pattern. The upper-tropospheric large-scale anomalous divergence field clearly showed the active phase of convection over the Indian Ocean and tropical central Pacific and the inactive phase of convection around the Philippines.

It was noteworthy that the WB/PJ+ cases triggered by the RWB east of Japan accounted for approximately 20% of the whole PJ+ cases. This estimated percentage is not insignificant because the formation of positive PJ pattern had been considered to be primarily excited by tropical atmospheric and oceanographic variabilities such as the ISO, local anomalous SSTs, ENSO, and tropical cyclone activities. Furthermore, the atmospheric and oceanographic signals such as the local SST deviations over the subtropical WNP and the BSISO for the ZN/PJ+ and ZN/PJ– cases, the basin-wide SST warming over in the northern part of the Indian Ocean for the WB/PJ– case, and the PMM-like meridional SST gradient for the WB/PJ+ case was clearly detected by classifying the PJ+ and PJ– cases into those with and without the RWB occurrence. Some cases of the extracted PJ pattern may be caused by both the RWB and the tropical variabilities, which are not clarified by the composite analysis in this study. Such combination effect on the formation and the enhancement of PJ pattern should be further explored in future works. This classification for the PJ cases shown in this
study will promote our further understanding for the “pure” impact of tropical atmospheric and oceanographic variabilities on the formation of PJ pattern.

Acknowledgments

The authors are very grateful to an editor Dr. Ryo Mizuta and two anonymous reviewers for their constructive and helpful comments. The Generic Mapping Tools (GMT) were used for the graphics. This study was partly supported by the JSPS KAKENHI Grant (18H01280, 18K03734).

References

Ko, K.-C., and J.-H. Liu, 2016: Quasi-periodic behavior of the Pacific–Japan teleconnection pattern affecting propagation routes of summertime wave patterns and the associated

Lu, R., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in

Srinivas, G., J. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. S. R. Presad,

List of Figures

(a) PC1 (21.8%)
(b) PC2 (16.2%)
(c) Spectrum of PJ Index
(d) Interannual Timeseries

Period (day)

Power Spectra

PJ Index

Fig. 1 (a) First and (b) second modes of an empirical orthogonal function (EOF) analysis for 5-day running mean 850-hPa relative vorticity between [0–60°N, 100–160°E] (a region shown in the figures) for the period of July–August from 1958 to 2018. The EOF patterns are normalized by the standard deviations of principal components during the period. Solid and dashed contours denote the positive and negative anomalous vorticities with the intervals of 0.5×10^{-6} s$^{-1}$, respectively. Variance fractions of the two modes are shown in the top of each panel. (c) Power spectrum of daily PJ indices during a period from 1 July to 31 August. Gray thin lines denote the spectrum in each year from 1958 to 2018. Black thick line denotes the averaged spectrum during a 61-yr period from 1958 to 2018. (d) Interannual timeseries of the July–August mean PJ indices averaged during the 61-yr period (black line). Black dashed line and gray shading denote the 61-yr average of the PJ index and the standard deviation, respectively.
Fig. 2 Central dates (i.e., day 0) of extracted (a) PJ+ and (b) PJ− cases (red and blue colored circles) in July–August during 61-yr period from 1958 to 2018. Green bars denote the Baiu period over Kanto/Koshin district in Japan during the 61-yr period, except in 1993 when the withdrawal of Baiu was not identified.
Fig. 3 Regions to evaluate the RWB index (red colored solid and dashed boxes) and those to calculate area average over the subtropical western North Pacific (green colored box) and over the east of Japan (purple colored box). Light green and blue shadings denote the regions to calculate zonal and meridional components of vertically-averaged WAFs, respectively. See text for the definition of the RWB index and the vertically-averaged WAFs. Contour denotes the monthly mean climatological stream function at 200 hPa in July–August with the interval of 10×10^6 m2 s$^{-1}$.
Fig. 4 A scatter diagram between the PJ index on day 0 and the RWB index on day –2 (unit: K) for extracted PJ+ (red circles) and PJ– (blue circles) cases. Gray shading denotes a range of the PJ index from –2 to +2. Red closed, blue closed, red opened, and blue closed circles indicate WB/PJ+, WB/PJ–, ZN/PJ+, and ZN/PJ– cases, respectively. A figure on the right shows a histogram of RWB indices normalized by the sample number with a class width of 2.5K for the PJ+ (red bars) and PJ– (blue boxes) cases.
Fig. 5 Composite of 5-day running mean (left) 200-hPa anomalous vorticity (contour; unit: 10^{-6} s$^{-1}$), (middle) 360-K potential vorticity (contour; unit: PVU) and convective precipitation (shading; unit: mm d$^{-1}$), and (right) 850-hPa anomalous vorticity (contour) for WB/PJ+ case. Solid and dashed contours denote negative and positive vorticity anomalies, respectively. Green vectors show the WAF (unit: m2 s$^{-2}$). Shadings in the left
and right panels and dots in the middle panel indicate significance at a 95% confidence level of the anomalous vorticity and the anomalous convective precipitation, respectively. Dots in the left panel indicate regions where 200-hPa anomalous kinetic energy, which is derived from anomalous zonal and meridional winds, exceeds 90 m² s⁻². (a, b, c) day -6, (d, e, f) day -4, (g, h, i) day -2, and (j, k, l) day 0.
Fig. 6 Composite of anomalous $\bf N$-vectors (vectors; unit: $m^2 kg^{-1} s^{-1}$) and ω'_dyn (shading; unit: $10^{-2} \text{ Pa s}^{-1}$) at 500 hPa over a region north of $5^\circ N$ derived from 5-day running mean on day 0 for (a) WB/PJ+ and (b) WB/PJ− cases.
Fig. 7 Scatter diagrams of 5-day running mean (a) $-\omega'_{\text{dyn}}$ at 500 hPa (X-axis; unit: 10^{-2} Pa s$^{-1}$) and convective precipitation (Y-axis; unit: mm d$^{-1}$) averaged over region A (green colored box in Fig. 3) and (b) the convective precipitation (X-axis) and PJ index (Y-axis) on day 0. A dashed line denotes a regression line. The corresponding correlation coefficient (R) is shown at the lower right of the panel.
Fig. 8 Same as Fig. 5, but for WB/PJ– case.
Fig. 9 Histogram of the meridional component of WAF at 200-hPa (unit: m2 s$^{-2}$) averaged over region B (purple colored box in Fig. 3) with a bin width of 2 m2 s$^{-2}$ for the WB/PJ+ (red bars) and WB/PJ− (blue boxes) cases. The frequency distribution is normalized by the sample number.
Fig. 10 Same as Fig. 5, but for ZN/PJ+ case.
Fig. 11 Same as Fig. 5, but for ZN/PJ− case.
Fig. 12 Composite of SST deviation (unit: °C) averaged from day –15 to day –6 for (a) WB/PJ+, (b) WB/PJ–, (c) ZN/PJ+, and (d) ZN/PJ– cases. Dots indicate significance at a 95% confidence level of the SST deviation.
Fig. 13 Same as Fig. 12, but for 5-day running mean velocity potential at 200 hPa (contour; unit: $10^5 \text{ m}^2 \text{s}^{-1}$), convective precipitation (shading; unit: mm d$^{-1}$), and horizontal wind at 925 hPa (vector; unit: m s$^{-1}$) on day 0. Dots indicate significance at a 95% confidence level of the 200-hPa velocity potential.
Fig. 14 Time–latitude cross sections for composite of anomalous convective precipitation (unit: mm d\(^{-1}\)) averaged between 80\(^\circ\)E and 140\(^\circ\)E during a period from day -10 to day $+10$ for (a) WB/PJ+, (b) WB/PJ$, (c)$ ZN/PJ+, and (d) ZN/PJ$ cases. Dots indicate significance at a 95% confidence level of the convective precipitation. Red and blue dashed lines in (c) and (d) represent northward propagation of intra-seasonal and bi-week oscillations with periods of 40 and 15 days for a meridional wavelength of 30\(^\circ\) with a latitudinal interval of 15\(^\circ\), respectively.
Fig. 15 Composite of 5-day running mean anomalous absolute vorticity advection by meridional wind at 200-hPa (shading; unit: 10^{-11} s$^{-2}$) on day 0 in terms B+D (top), B (middle), and D (bottom) in Eq. (4) for (left) WB/PJ+ and (right) WB/PJ− cases. Contours in the top and bottom figures show the 200-hPa anomalous vorticity (unit: 10^{-5} s$^{-1}$). Contours in the middle figures show the 200-hPa climatological absolute vorticity (unit: 10^{-5} s$^{-1}$). Vectors in the middle and bottom figures show the anomalous and climatological horizontal wind (unit: m s$^{-1}$), respectively.
Fig. 16 A Scatter diagram between anomalous absolute vorticity advection by meridional wind at 200-hPa in term B+D in Eq. (4) (X-axis; unit: 10^{-11} s$^{-2}$) and $-\omega'_\text{dyn}$ at 500 hPa (Y-axis; unit: 10^{-2} Pa s$^{-1}$) averaged over region A (green colored box in Fig. 3) derived from 5-day running mean on day 0. Red and blue circles denote WB/PJ+ and WB/PJ− cases, respectively. Red, blue, and black dashed lines show regression lines for the WB/PJ+, WB/PJ− cases, and both the cases, respectively. R, R_P, and R_M shown in the top left of the panel denote the corresponding correlation coefficients.
Fig. 17. (a) Daily timeseries for composites of zonal component of WAF (green line; WAFx, unit: m² s⁻²) averaged over the light-green shaded region in Fig. 3 and meridional component of WAF (blue line; WAFy) averaged over the light-blue shaded region in Fig. 3 during a period from day −7 to day +1 for the WB/PJ+ cases. Error bars denote standard deviations. The zonal and the meridional components of WAF are vertically averaged from 500 and 100 hPa and from 850 and 500 hPa, respectively. (b) A scatter diagram of WAFx (X-axis) and WAFy (Y-axis) on day −2. The black dashed line corresponds to WAFy with the same value of WAFx. Green (blue) circles indicate the cases that WAFx (WAFy) is larger than WAFy (WAFx).
List of Tables

Table 1 Numbers of extracted positive (PJ+) and negative (PJ−) PJ patterns with absolute values of PJ indices larger than thresholds of 1.5, 2 (definition in this study), and 2.5.

<table>
<thead>
<tr>
<th>Threshold of PJ index</th>
<th>PJ+</th>
<th>PJ−</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>126</td>
<td>119</td>
</tr>
<tr>
<td>2.0</td>
<td>116</td>
<td>114</td>
</tr>
<tr>
<td>2.5</td>
<td>94</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 2 Numbers and percentages (unit: %) of WB/PJ+, WB/PJ−, ZN/PJ+, ZN/PJ− cases derived from classifications of the PJ cases using RWB indices on day 0, −1, −2, and −3. The percentage is separately derived for PJ+ and PJ− cases.

<table>
<thead>
<tr>
<th></th>
<th>WB/PJ+</th>
<th>WB/PJ−</th>
<th>ZN/PJ+</th>
<th>ZN/PJ−</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 0</td>
<td>34 (29%)</td>
<td>16 (14%)</td>
<td>82 (71%)</td>
<td>98 (86%)</td>
</tr>
<tr>
<td>day −1</td>
<td>31 (27%)</td>
<td>9 (8%)</td>
<td>85 (73%)</td>
<td>105 (92%)</td>
</tr>
<tr>
<td>day −2</td>
<td>31 (27%)</td>
<td>9 (8%)</td>
<td>85 (73%)</td>
<td>105 (92%)</td>
</tr>
<tr>
<td>day −3</td>
<td>30 (26%)</td>
<td>11 (10%)</td>
<td>86 (74%)</td>
<td>103 (90%)</td>
</tr>
</tbody>
</table>