EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is
DOI:10.2151/jmsj.2021-070

J-STAGE Advance published date: August 24th, 2021
The final manuscript after publication will replace the preliminary version at the above DOI once it is available.
Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean

Woosub Roh¹, Masaki Satoh¹, and Cathy Hohenegger²

¹Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Japan
²Max Planck Institute for Meteorology, Germany

Corresponding author: Woosub Roh, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, 277-8568, Japan. E-mail: ws-roh@aori.u-tokyo.ac.jp. © 2017, Meteorological Society of Japan.

Abstract

We intercompared the cloud properties of the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) simulation output over the Atlantic Ocean. The domain averaged outgoing long-wave radiation (OLR) is relatively similar across the models, but the net shortwave radiation at the top of the atmosphere (NSR) shows large differences among the models. The models capture the triple modes of cloud systems corresponding to shallow, congestus, and high clouds, even though their partition in these three categories is strongly model dependent. The simulated height of the shallow and congestus peaks is more robust than the peak of high clouds, whereas cloud water content exhibits larger intermodel differences than cloud ice.

Furthermore, we investigated the resolution dependency of the vertical profiles of clouds for NICAM (Nonhydrostatic ICosahedral Atmospheric Model), ICON
(Icosahedral Nonhydrostatic), and IFS (Integrated Forecasting System). We found that the averaged mixing ratio of ice clouds consistently increased with finer grid spacing. Such a consistent signal is not apparent for the mixing ratio of liquid clouds for shallow and congestus clouds. The impact of the grid spacing on OLR is smaller than on NSR and also much smaller than the intermodel differences.

Keywords: DYAMOND, global storm resolving models, intercomparisons of clouds

(Citation: Roh, W., M. Satoh: Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean. JMSJ, X, XXX-XXX, doi:10.2151/jmsj.XXXX-XXX.)

1. **Introduction**

General Circulation Models (GCMs) are used to simulate cloud and precipitation systems and investigate their change resulting from global warming scenarios. The representation of realistic cloud fields is one of the important unsolved issues of GCM simulations (e.g., Schneider et al. 2017; Zelinka et al. 2017). Clouds have a strong impact on the radiation budget but their representation, due to the coarse grid spacing of conventional GCMs, has to rely on uncertain parameterizations. This especially concerns the representation of cloud and precipitation systems associated with convection. These subgrid-scale convective systems can be explicitly represented by global models using fine enough horizontal resolution. With a grid spacing of less than about 5 km, at least mesoscale (convective) storms can be explicitly resolved. Such models can be run globally and are called global storm-resolving models (GSRMs, Satoh et al. 2019).
GSRMs have several merits. Convective systems can be simulated by physically consistent cloud microphysics schemes without the supplementary need of a convective parameterization. The probability distribution function of precipitation rates becomes closer to observed probabilities with an increase in frequency of extreme precipitation and a decrease in frequency of light precipitation as compared to GCMs (e.g., Kodama et al. 2015; Prein et al. 2020). The diurnal cycle of precipitation over the tropics and mid-latitudes is also well captured (e.g. Prein et al. 2015; Sato et al. 2008). However, even if GSRMs bypass the convective parameterization deadlock by brute force, they still need to rely on their cloud microphysics schemes to produce clouds and precipitation, with their inherent uncertainties. Because the horizontal grid spacing of GSRMs is comparable to satellite observations, such observations can be more directly compared to GSRMs than to GCMs, and more directly used to improve cloud microphysics schemes. This simplifies the interpretation of cloud evaluation in GSRMs (Masunaga et al. 2008; Hashino et al. 2016), also with the help of satellite simulators (Roh and Satoh 2014; Roh et al., 2020; Seiki and Roh 2020).

One of the ways to understand and improve the performance of GSRMs is to perform an intercomparison study. The first intercomparison project for GSRMs was the DYNAMICS of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND, Stevens et al., 2019). In DYAMOND, nine GSRMs were run for 40 days starting August 1st, 2016, using pre-described sea surface temperature.

In this study, we focus on clouds over the tropical Atlantic as simulated by seven of the nine DYAMOND models. Over the tropical Atlantic, shallow clouds are dominant in the trade wind region and deeper convective systems co-exist with cirrus clouds in the ITCZ. It is known that the tropical Atlantic is also largely influenced by the Hadley-
Walker circulation (e.g., Wang 2004). Our aim is for the first time to assess the representation of cloud properties in several GSRMs integrated under the same constrained conditions. We also examine the resolution dependency of cloud properties for three DYAMOND models that were run at various resolutions. We evaluate the cloud profiles using satellite data with satellite simulators.

2. Models and observation data

The DYAMOND models were initialized on 1st Aug. 2016 with the same ECMWF 9 km reanalysis data. The total integration time was 40 days. Nine models participated in DYAMOND: the global non-hydrostatic model of Météo-France (ARPEGE-NH, Bubnova et al., 1995), the GFDL Finite Volume Cubed-Sphere Dynamical Core (FV3, Lin, 2004), the Goddard Earth Observing System (GEOS, Putman and Lin, 2007), a non-hydrostatic model discretized over an icosahedral grid (ICON, Zangl et al., 2015), the ECMWF Integrated Forecasting System (IFS, Wedi, 2014), the Model for Prediction Across Scales (MPAS, Skamarock et al., 2012), a Non-hydrostatic ICosahedral Atmospheric Model (NICAM, Satoh et al., 2014), the System for Atmospheric Modeling (SAM, Khairoutdinov and Randall, 2003), and the Unified Model (UM, Wood et al., 2013).

Four models did not use a convective parameterization (ARPEGE-NH, ICON, NICAM, and SAM). The simulations, except for the UM simulation, were done with less than 5 km horizontal grid spacing. The NICAM, IFS, and ICON simulations were also rerun with coarser resolutions. The detailed descriptions of the model configurations are given in Stevens et al. (2019) and a more detailed description of the ICON simulations can be
found in Hohenegger et al. (2020). For our analysis, we did not include UM, as it used a grid spacing coarser than 5 km, and ARPEGE-NH. In the case of ARPEGE-NH, we had an issues of the data handling. We think the results of seven models are enough to show the variation of vertical profiles of cloud ice, cloud water, and cloud fraction.

For validation, we used daily Outgoing Longwave Radiation (OLR) and Net Shortwave Radiation at the top of the atmosphere (NSR) from the Clouds and the Earth’s Radiant Energy System (CERES; Wielicki et al., 1996) available at one-degree grid spacing. We used the merged CloudSat/CALIPSO data (DarDar data, Delanoë and Hogan, 2010) to derive cloud properties. The 94 GHz radar reflectivity, 532 nm total attenuated backscatters, and simplified cloud mask (Delanoë and Hogan, 2010) were used as observation data in the DarDar data.

We focused on a smaller region of the tropical Atlantic ocean covering the area 30°W – 50°W and 0°N – 20°N. We restricted our analysis to a 10 day time period, from 11th to 20th Aug. 2016. The features and differences between the simulations that we will highlight are robust and can actually even been seen on a single day basis.

We also evaluated the cloud fractions of NICAM using CloudSat and CALIPSO signals using the Joint simulator for satellite sensors (Hashino et al. 2013) in Section 5. The sensor simulator was the EarthCARE Active Sensor Simulator (EASE, Okamoto et al., 2007, 2008; Nishizawa et al., 2008).

3. Intercomparison of clouds

Figure 1 shows the horizontal distributions of daily OLR over the tropical Atlantic on 11th Aug. 2016 comparing the CERES observation with the simulation output of NICAM,
IFS, ICON, GEOS, FV3, MAPS, and SAM. The CERES data show a convective band near the equator and a large convective system over the western side of the south American continent (60°W–80°W). The seven models reproduce similar large-scale cloud systems: a convective band over the tropical ocean and organized convective systems over the western side of the south American continent. The 10-day domain averaged OLRs in the analysis domain show simulated OLR within 10 W m⁻² of the observation data (Table 1). FV3 overestimates OLR, whereas the other models underestimate it.

Figure 2 shows daily net shortwave radiation (NSR) at the top of the atmosphere for the same seven models. The CERES observation shows the decrease of NSR over regions with shallow and deep convection, and the low NSR from the Sun’s declination in the southern Atlantic Ocean. The models reproduce these features. The simulated domain averaged NSR is within 30 W/m² from the observation (Table 1). Hence the differences in NSR are larger than in OLRs. This is also true when looking at the inter-model differences. This is consistent with the results of Stevens et al. (2019) when looking over the whole tropics and the 40 days. NICAM overestimates NSR compared to the observation because of the lack of shallow clouds (see also Fig. 3). ICON and GEOS underestimate NSR compared to the observation. The better agreement in OLR than in NSR is linked to the fact that OLR is mostly affected by high clouds. The high clouds from the large convective systems can be represented with a grid spacing of a few kilometers. In contrast, the shallow clouds are parameterized by boundary layer schemes, cumulus parameterization and remain underresolved at such scales.

Figure 3 shows the vertical profiles of the domain-averaged mixing ratios of cloud water and cloud ice for the 10 days. All simulations reproduce the triple mode of cloud
systems, i.e., shallow (below 4 km altitude), congestus (within 4 and 8 km altitude), and high clouds (above 8 km altitude). The peaks in cloud water lie between 1.5 and 2 km height for shallow clouds in the investigated DYAMOND models. For the congestus clouds, six out of the seven models simulate the peak within 4 and 5 km altitude; only IFS simulates the peak near 6 km. The fact that IFS uses a bulk mass flux scheme (Bechtold et al. 2014; Tiedtke 1993) for shallow, congestus and deep convection might explain this discrepancy. In terms of amount, all the models seem to agree to a first order with values comprised between 0.005 and 0.02 g/kg. Only ICON appears as an outlier and simulates an almost three times larger cloud water content. This is consistent with the lowest NSR value displayed by ICON in Table 1.

The distribution of cloud ice shows a high-cloud peak. Its height displays large discrepancies across the models, discrepancies that are larger than the ones found for the shallow and congestus clouds. NICAM shows a peak near 14 km, whereas SAM and GEOS exhibit much lower peaks, near 8 km. Integrated over the vertical column, SAM and GEOS also exhibit larger cloud ice amount, with values of 0.008 against 0.005 in the other models except NICAM. The fact that SAM and GEOS include the precipitating ice categories like graupel and snow in the cloud ice category may largely explain their larger ice amount and lower peak. MPAS reproduced the smallest mixing ratio of cloud ice among the seven models. The microphysics scheme (Thompson et al. 2004) of MPAS has the very little cloud ice but a lot of snow.

Figure 4 shows the vertical profiles of cloud fraction. For the observations, the simplified cloud mask (Delanoë and Hogan, 2010) from the merged data from CALIPSO and CloudSat was used as proxy for the cloud fraction. In the simulations, we defined clouds as grid points with a mixing ratio of cloud water plus cloud ice larger than 1 mg/kg.
Note that most participating model except NICAM and SAM use cloud cover schemes of varying complexity. The cloud cover consistent with each model's formulation was not available within the DYAMOND dataset. For simplicity we therefore defined clouds as grid points with a mixing ratio of cloud water plus cloud ice larger than 1 mg/kg. The observation shows the triple modes of the cloud population with peaks around 1 km, 5 km and 13 km. The shallow and deep clouds are dominant compared to the congestus clouds in the observations. Although the simulations reproduce the three modes of clouds at similar altitude for the shallow and congestus population, the partitioning is different across models. For example, NICAM underestimates the shallow clouds compared to the observation and to the other models. ICON reproduces a higher fraction of shallow clouds than the observation and NICAM. The highest fraction of congestus clouds is to be found in IFS and ICON, whereas NICAM and GEOS exhibits the highest fraction of high clouds. Hohenegger et al. (2020) showed that the partitioning of clouds between shallow, congestus and deep can also strongly vary within the same model when changing the horizontal resolution (see their Fig. 7).

4. Resolution dependency

The characteristics of resolution dependencies of cloud properties is one of the interesting issues. We investigate the resolution dependency of domain averaged mixing ratio of cloud water and cloud ice using the three models NICAM, ICON, and IFS (Fig. 5, 6), where simulations at different resolutions were performed. ICON reduces the mixing ratio of cloud water with finer grid spacing (Fig. 5b), as also noted in Hohenegger et al. (2020). This reduction is particularly visible in the lowest 2 km. Such a reduction
with grid spacing is also visible in NICAM and IFS. In NICAM, it is nevertheless less
pronounced, whereas in IFS, the reduction happens between 4 and 8 km altitude. We
speculate that the fact that IFS uses a convective parameterization, in contrast to ICON
and NICAM, explains this distinct behavior. The combination of a finer grid spacing and
a convective parameterization may facilitate a fast transition from congestus to deep
clouds. The resolution-induced differences nevertheless remain smaller than differences
previously noted across models (compare to Fig. 3a). In contrast, the resolution
dependency of the mixing ratio of cloud ice shows very consistent results across the three
models: the mixing ratio of high clouds and the height of the maximum mixing ratio
increase with the finer grid spacing (Fig. 6).

Such a consistent resolution dependency is again not seen in the cloud fraction. The
cloud fraction associated with high clouds slightly increases in NICAM and ICON in
higher resolution experiments (Fig. 7). However, this fraction was reduced when going
from the 9-km to the 4-km IFS experiment. To get more insight, we investigate the
frequencies of ice water path (IWP) divided by the resolution factor between NICAM and
IFS (Fig. 8). We only divided the frequencies of IWP in 4-km IFS and 3.5-km NICAM
by factor 4. Both of models increased the cloud frequencies for extreme cases with larger
IWP than 20 kg/m2 (NICAM) and 2 kg/m2 (IFS) in the finer grid spacing. There is a clear
difference in the clouds less than 2 kg/m2 of IWP between NICAM and IFS. NICAM
increased cloud frequencies with the IWP less than 2 kg/m2, but IFS reduced the cloud
frequencies with the IWP within 10 g/m2 and 2 kg/m2 in the finer grid spacing. The
different pattern of cloud frequencies within 10 g/m2 and 2 kg/m2 in IWP leads the opposite
impact on the ice cloud fraction depending on the grid spacing between NICAM and IFS
(Fig. 7a, c). And the increase of clouds with larger than 2 kg/m2 made the increase of
domain averaged mixing ratio of cloud ice in IFS (Fig. 6c).

We also investigated the resolution dependency of domain averaged OLR and NSR (Table 2). Similar to the model sensitivity, the resolution dependency is much larger for NSR than for OLR. In terms of OLR, its sensitivity to resolution is even smaller than the intermodel differences. The domain averaged OLR in NICAM and ICON decreased by almost 2 or 3 W/m² with finer grid spacing. In contrast, the OLR of IFS increased by 4.6 W/m², which is related to cloud fraction and mixing ratio (Fig. 6, 7). The NSR increases with finer grid spacing due to the reduction of the shallow cloud fraction and mean mixing ratio of cloud water. The NSR from ICON-10km to ICON-5km as well as IFS-9km to IFS-4km shows a significant reduction. ICON decreased domain averaged mixing ratio of cloud water in (Fig.5b), on the other hand, IFS decreased cloud fraction of shallow clouds (Fig. 7c). NICAM did not shows a distinct reduction of the NSR between two resolutions.

5. Evaluation using a satellite simulator

The choice of the mixing ratio threshold to define the cloud fraction affects the resulting vertical profile of cloud fraction, making the comparison to observations, as on Fig. 4. For instance, we tested three different thresholds in NICAM in Fig. 9. Especially the cloud fraction above 5 km shows a large sensitivity to the chosen threshold. This means that the definition of what a cloud is important for the evaluation of the vertical structure of clouds.

Moreover, when we compare the mixing ratio of hydrometeors of each model, even two models with the same mixing ratio can exhibit different radiative properties because of the different size distributions and microphysical assumptions of each model. One of
the methods to avoid uncertainties stemming from microphysical assumptions, threshold setting and to compare the same physical variables in observations and models is an application of a satellite simulator. Such a simulator uses the same setting of microphysical properties in the specific GSRMs and calculates the radiances like seen in satellite signals (Masunaga et al., 2010; Hashino et al., 2013; Matsui et al., 2014). It is thus possible to evaluate the simulations using the observation directly.

Unfortunately, the standard output of the DYAMOND models is not enough to run a satellite simulator. The reason is that not all the hydrometeor classes were outputted. We thus reran tests only for NICAM with the necessary supplementary output. We used the merged brightness temperature and CALIPSO/CloudSat signals for the evaluation.

The CERES data have limitations to detect small-size clouds as well as the temporal variations of convective systems. It is thus necessary to use the merged 11 μm brightness temperatures from the National Centers for Environmental Prediction/Climate Prediction Center (Janowiak et al. 2001) instead of the CERES data, which provides us with a horizontal resolution finer than 5 km and a temporal resolution of 30 min. We compared the resulting horizontal distributions of brightness temperature in Figure 10. A convective band is visible in the observed brightness temperature, and NICAM also reproduces a convection near the equator. Shallow clouds with high brightness temperature were found in the northern part of this analysis domain, even though they are misplaced between observations and NICAM.

We evaluate the vertical profiles of cloud fractions using CloudSat and CALIPSO (Fig. 11). We first compare the cloud fraction between the CloudSat cloud radar and NICAM using the same threshold of radar reflectivity of -25 dBZ (Fig. 11a). The cloud radar is more sensitive to precipitating ice and rain than the lidar of CALIPSO, whose comparison
to NICAM is shown in Fig. 11b. The cloud fraction observed by the cloud radar of CloudSat (Fig. 11a) is similar to the cloud fraction from the simplified cloud mask from CALIPSO (DarDar), previously shown in Fig. 4, and to CALIPSO (Fig. 11b). The cloud fraction of CloudSat above 14 km is underestimated compared to the merged cloud mask of the DarDar data. The previously noted overestimation of high clouds in NICAM and underestimation of shallow clouds remain visible when comparing NICAM to CloudSat using the satellite simulator. However, there is mismatch of cloud fractions between 2 and 10 km related to precipitating hydrometeors like snow and graupel. CloudSat also shows surface clutters (e.g., Marchand et al. 2008), which is not apparent in NICAM.

We compare the cloud fractions between the lidar of CALIPSO and NICAM using the same threshold of 532 nm for the total attenuated backscatter. The CALIPSO can detect both aerosols and optically thin cirrus clouds. We use the threshold of $5 \times 10^{-3} / \text{m/sr}$ for the cloud detection by the lidar to remove the signals from aerosols. This threshold is a relatively large backscatter for clouds and will thus predominantly detect optically thick ice clouds and water clouds. CALIPSO shows a high fraction of shallow clouds and of congestus clouds with liquid phases of clouds. NICAM underestimates both shallow and congestus cloud fractions as compared to CALIPSO. The underestimation of shallow clouds is consistent to the underestimation of NSR than the CERES. One of the reasons for the underestimation of liquid water content in NICAM is a too fast transition from cloud water to the rain category in the microphysics scheme.

6. Summary and conclusion

In this study, we compared the cloud properties of DYAMOND model simulations over the Atlantic Ocean for 10 days. Shallow convective clouds were dominant over the
analysis domain with deep convection and high clouds in the center of the domain. The
domain averaged OLR was found to be more similar across the models than the domain
averaged net shortwave radiation at the top of the atmosphere. The vertical structure of
cloud water, cloud ice and cloud fraction exhibited large variations across models.
Noteworthy is that all models exhibited tree peaks in their vertical structure, as expected
from the presence of shallow, congestus and deep clouds, but the altitude of the peak of
the deep clouds was especially model dependent. In contrast, intermodel variations in
cloud water content are larger than in cloud ice content, in agreement with the larger
differences seen in NSR than in OLR.

We examined the resolution dependency of vertical profiles of clouds among NICAM,
ICON, and IFS. The resolution-induced differences are generally smaller than the
intermodel differences. All the three models increased the mixing ratio and the height of
maximum mixing ratio of cloud ice with finer horizontal resolution. Interestingly, the
mixing ratio of cloud water for the shallow and for the congestus clouds shows distinct
sensitivities to resolution depending on the investigated model. ICON reduced the mixing
ratio of cloud water in shallow clouds and slightly increased cloud water in congestus
clouds with finer grid spacing. In contrast, IFS reduced the mixing ratio of cloud water in
congestus clouds with no change of mixing ratio in shallow clouds. We found that IFS
also showed a distinct response of the cloud fraction of high clouds to changes in grid
spacing compared to NICAM and ICON. The cloud fraction of high clouds decreased in
IFS and slightly increased in NICAM and ICON with finer grid spacing. We speculate
that especially the use of a convective parameterization in IFS, in contrast to NICAM and
ICON, might explain these distinct sensitivities to resolution.

The comparison of cloud fraction across models and to observations was affected by
the threshold chosen for the cloud detection and by the definition of hydrometers. It is important to use the same criteria among models and observations. We suggested that one of the ways to use the same criteria is by applying a satellite simulator. However, more variables and information would be needed to run the Joint simulator on the DYAMOND simulation output, except for NICAM where this information is available. We applied such a simulator on the NICAM output and evaluated the results against CloudSat and CALIPSO. We found that NICAM underestimates the cloud fraction of shallow and congestus clouds compared to satellite data.

In the future, it is needed to investigate the reasons for the noted different characteristics of cloud properties by conducting sensitivity tests of parameterization like microphysics schemes, and evaluate the vertical structure of clouds and precipitation using observations.

Acknowledgements

The authors are grateful to anonymous reviewers for their constructive comments. An analysis was done by the NEC SX supercomputer at Center for Global Environmental Research of National Institute for Environmental Studies. This research was supported by the EarthCARE Program, Earth Observation Research Center of JAXA.

References

Bechtold, P., N. Semane, P. Lopez, J. P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing Equilibrium and Nonequilibrium Convection in Large-Scale

Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM

Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S. H. Park, and T. D.

Zangl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2015: The ICON (ICOshedral Non-

<table>
<thead>
<tr>
<th></th>
<th>OLR (W·m⁻²)</th>
<th>NSR (W·m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERES</td>
<td>275.5</td>
<td>336.9</td>
</tr>
<tr>
<td>NICAM</td>
<td>259.3</td>
<td>365.2</td>
</tr>
<tr>
<td>ICON</td>
<td>259.2</td>
<td>316.16</td>
</tr>
<tr>
<td>IFS</td>
<td>270.7</td>
<td>343.7</td>
</tr>
<tr>
<td>GEOS</td>
<td>261.2</td>
<td>327.1</td>
</tr>
<tr>
<td>FV3</td>
<td>276.4</td>
<td>348.6</td>
</tr>
<tr>
<td>MPAS</td>
<td>269.9</td>
<td>327.0</td>
</tr>
<tr>
<td>SAM</td>
<td>271.4</td>
<td>350.9</td>
</tr>
</tbody>
</table>

Table 2. The 10 days averaged OLR and NSR of coarse-resolution experiments in the
analysis domain.

<table>
<thead>
<tr>
<th></th>
<th>OLR (W·m⁻²)</th>
<th>NSR (W·m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICAM 7 km</td>
<td>260.8</td>
<td>362.5</td>
</tr>
<tr>
<td>ICON 5 km</td>
<td>261.0</td>
<td>319.8</td>
</tr>
<tr>
<td>ICON 10 km</td>
<td>262.0</td>
<td>303.4</td>
</tr>
<tr>
<td>IFS 9 km</td>
<td>266.1</td>
<td>336.0</td>
</tr>
</tbody>
</table>

Figure Captions

Figure 1. Horizontal distributions of daily OLR in CERES (a), NICAM (b), IFS (c), ICON (d), GEOS (e), FV3 (f), MPAS (g), and SAM (h) on the 11th Aug. 2016. The unit of contour is W·m⁻². The white box is the analysis domain.

Figure 2. Same as Fig. 1 but for NSR.

Figure 3. Vertical profiles of the domain-averaged mixing ratio of cloud water (a) and cloud ice (b) for 10 days from 11th to 20th Aug. 2016.

Figure 4. Vertical profiles of cloud fractions for DarDar, NICAM, and ICON (a), as well as DarDar, IFS, GEOS, and SAM (b) for 10 days.

Figure 5. Resolution dependencies of the vertical profile of the domain-averaged mixing ratio of cloud water for NICAM, ICON, and IFS.

Figure 6. Same as Fig. 5 but for cloud ice.
Figure 7. Same as Fig. 5 but for cloud fraction.

Figure 8. The frequencies of ice water path divided the resolution factor between two resolutions in NICAM (a) and IFS (b).

Figure 9. Vertical profiles of cloud fractions in NICAM with different thresholds of clouds.

Figure 10. Horizontal distributions of 11 µm brightness temperatures in the observation (a) and NICAM (b) at 00UTC on 11th Aug. 2016.

Figure 11. Vertical profiles of cloud fractions by cloud radar (a) and lidar (b) with the NICAM simulation results.
Figure 1. Horizontal distributions of daily OLR in CERES (a), NICAM (b), IFS (c), ICON (d), GEOS (e), FV3 (f), MPAS (g), and SAM (h) on the 11th Aug. 2016. The unit of contour is W·m$^{-2}$. The white box is the analysis domain.
Figure 2. Same as Fig. 1 but for NSR.
Figure 3. Vertical profiles of the domain-averaged mixing ratio of cloud water (a) and cloud ice (b) at 00UTC for 10 days from 11th to 20th Aug. 2016.
Figure 4. Vertical profiles of cloud fractions for DarDar, NICAM, and ICON (a), as well as DarDar, IFS, GEOS, and SAM (b) for 10 days.
Figure 5. Resolution dependencies of the vertical profile of the domain-averaged mixing ratio of cloud water for NICAM, ICON, and IFS.
Figure 6. Same as Fig. 5 but for cloud ice.
Figure 7. Same as Fig. 5 but for cloud fraction.
Figure 8. The frequencies of ice water path divided the resolution factor between two resolutions in NICAM (a) and IFS (b).
Figure 9. Vertical profiles of cloud fractions in NICAM with different thresholds of clouds.
Figure 10. Horizontal distributions of 11 \(\mu \)m brightness temperatures in the observation (a) and NICAM (b) at 00UTC on 11th Aug. 2016. The color bar is in degrees Kelvin.
Figure 11. Vertical profiles of cloud fractions by cloud radar (a) and lidar (b) with the NICAM simulation results.