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Abstract10

A simple conceptual model of the resonant interaction in a typhoon-like11

vortex between vortex Rossby waves (VRWs) and gravity waves (GWs),12

which are caused by the VRWs, is presented. It is well known that the VRWs13

in the central region of the vortex can grow by the interaction with the GWs14

in the outer region, but a simple conceptual model for their interaction has15

not yet been proposed. The proposed conceptual model is based on the16

buoyancy-vorticity formulation (BV-thinking), and is different from that17

for the barotropic and baroclinic instabilities based on PV interactions (PV-18

thinking).19

We consider disturbances of the first baroclinic mode on a basic barotropic20

vortex. The disturbance vertical vorticity ζ of the VRW in the central region21

has a large amplitude on the upper and lower levels. While, the disturbance22

buoyancy b and radial vorticity η of the GW have a large amplitude on the23

middle level. The central VRW propagates (relative to the fluid) anticy-24

clonically, but moves cyclonically because of the strong cyclonic advection25

by the vortex. The outer cyclonically propagating GW is weakly advected26

also cyclonically by the vortex. As a result, the counter-propagating VRW27

and GW (satisfying Rayleigh’s condition) may be phase-locked with each28

other (satisfying Fjørtoft’s condition).29

By the counter-propagation and phase-lock, the circulation around ζ of30
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the VRW enhances b of the GW, which in turn enhances η. At the same31

time, the circulation around η of the GW enhances ζ of the VRW. As a32

result, the VRW and GW grow simultaneously.33

We analytically show the possibility of the resonant interaction, and34

numerically obtain the growing solution in the system linearized about the35

basic vortex.36
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1. Introduction38

On a typhoon-like axisymmetric vortex, vortex Rossby waves (VRWs)39

exist supported by the radial gradient of the vertical vorticity. In addition,40

gravity waves (GWs) also exist supported by the vertical gradient of the41

buoyancy which is proportional to the potential temperature. Asymmetric42

disturbances on a typhoon-like axisymmetirc vortex are considered to con-43

sist of VRWs and GWs. Asymmetric disturbances are known to influence44

the intensity and track of a typhoon. For example, Willoughby(1977, 1978)45

interpreted the spiral rain bands as inward-propagating GWs. Montgomery46

and Kallenbach (1997) interpreted them as outward-propagating VRWs,47

and showed that the axisymmetrization of the VRWs intensifies the axisym-48

metric vortex. Schubert et al. (1999), and Kossin and Schubert (2001, 2004)49

proposed that polygonal eyes of a typhoon are formed by VRWs with var-50

ious azimuthal wave numbers in the vicinity of the eyewall. Nolan and51

Montgomery (2000, 2001, 2002) proposed that the meandering of the track52

of a typhoon is caused by VRWs with azimuthal wave number one.53

In the case of a typhoon-like axisymmetric vortex which has an an-54

nulus of high vertical vorticity corresponding to the eyewall (e.g., Kossin55

and Schubert 2001), the radial gradient of the vertical vorticity at the in-56
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side edge of the annulus is opposite in sign to that at the outside edge.57

There exist cyclonically propagating VRWs at the inside edge, and anti-58

cyclonically propagating VRWs at the outside edge. Here “propagating”59

means “propagating relative to the fluid”. The counter-propagation implies60

the satisfaction of Rayleigh’s condition. Further, the cyclonic advection by61

the axisymmetric vortex is stronger at the outside edge than inside. As62

a result, the VRWs at the inside and outside edges may be phase-locked63

with each other, and move cyclonically together. The possibility of phase-64

lock implies the satisfaction of Fjørtoft’s condition. If phase-locked, the65

counter-propagating VRWs grow by the resonant interaction between them66

(VRW-VRW interaction). Also in the presence of an annulus of low verti-67

cal vorticity in the outer region of an axisymmetric vortex, the growth of68

phase-locked counter-propagating VRWs is possible.69

In the case of a monopole axisymmetric vortex, the radial gradient of70

the vertical vorticity is everywhere negative. As a result, the VRWs on the71

vortex propagate anticyclonically everywhere. Because of the absence of the72

counter-propagating VRWs, disturbances do not grow by the VRW-VRW73

interaction. However, VRWs in the central region of the vortex generate74

GWs in the surrounding outer region. It is known that by the interaction75

between the central VRW and the outer GW (VRW-GW interaction) dis-76

turbances grow (e.g., Schecter and Montgomery 2004; Hodyss and Nolan77
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2008; Zhong et al. 2009; Menelaou et al. 2016).78

For example, Schecter and Montgomery (2004) investigated the VRW-79

GW interaction on a barotropic monopole axisymmetric vortex. By the use80

of the conservation of wave activity, they obtained an analytical expression81

of the growth (and damping) rate of the VRW. They showed the following.82

When the VRW-GW interaction is dominant, the VRW grows. While, when83

the critical radius damping (Schecter et al. 2002; Schecter and Montgomery84

2006) is dominant, the VRW decays. Hodyss and Nolan (2008) examined85

the VRW-GW interaction on a barocilinic monopole axisymmetric vortex.86

They showed that the growth due to the VRW-GW interaction is suppressed87

by the baroclinic structure. Further they examined the case of a vortex hav-88

ing an annulus of high vertical vorticity corresponding to the eyewall, and89

showed the following. When the annulus is thin, the VRW-VRW interaction90

is dominant. While, when the annulus is wide, the VRW-GW interaction is91

dominant. Zhong et al. (2009) showed the existence of growing waves, in92

addition to VRWs in the central region and GWs in the outer region of an93

axisymmetric vortex in the shallow water system. In the vicinity of the eye-94

wall, the VRW and GW degenerate into a growing mixed wave. Menelaou et95

al. (2016) investigated the growth of disturbances on an axisymmetric vor-96

tex with nonmonotonic radial distributions of potential vorticity (i.e., sat-97

isfying Rayleigh’s condition for the VRW-VRW interaction). They showed98
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the following. For the same Rossby number, the smaller Froud number im-99

plies the dominance of the VRW-VRW interaction, and the larger implies100

that of the VRW-GW interaction.101

The barotropic (e.g., Heifetz et al. 1999) and baroclinic (e.g., Brether-102

ton 1966) instabilities, which are the typical growing mechanisms of atmo-103

spheric disturbances, are caused by the interaction of Rossby waves (RWs),104

and can be conceptually clearly grasped by the PV-thinking (e.g., Hoskins105

et al. 1985) in a concise way. The barotropic instability is caused by the106

horizontal interaction between RWs counter-propagating to each other (i.e.,107

satisfying Rayleigh’s condition). If the advection by the environmental flow108

enables the RWs to be phase-locked (i.e., satisfying Fjørtoft’s condition), the109

resonant interaction between the RWs occur and they grow. The baroclinic110

instability, which is the mechanism of the growth of midlatitude cyclones, is111

caused by the vertical interaction between the eastward propagating lower112

RW and the westward propagating upper RW. The advection by the west-113

erly wind increasing upward enables them to be phase-locked, resulting in114

the resonant interaction between them and their growth.115

However, to our knowledge, there does not yet exist such a clear pic-116

ture for the VRW-GW interaction as that for the barotropic and baroclinic117

instability. Of course, the interaction between RWs (or vorticity waves in118

general) and GWs (i.e., buoyancy waves) has already long been discussed119
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(e.g., Cairns 1979; Sakai 1989), and the VRW-GW interaction here is simi-120

lar to the well-known Holmboe interaction (see e.g., Carpenter et al. 2011).121

In particular, as for stratified shear flow instability, Carpenter et al. (2011)122

discussed in detail the instability in a vertical-zonal 2-dimensional system123

from the point of wave interaction view. Roughly speaking, the interaction124

mechanism is described as follows: The vertical circulation induced by the125

horizontal vorticity perturbation amplifies the buoyancy perturbation, and126

at the same time the vertical circulation induced by the buoyancy pertur-127

bation amplifies the horizontal vorticity perturbation. On one hand, the128

RW-GW interaction in the vertical-zonal 2-dimensional system occurs be-129

tween horizontal vorticity and buoyancy waves. On the other hand, the130

VRW-GW interaction here, which takes place in a 3-dimensional system,131

occurs between vertical vorticity and buoyancy waves. Different from the132

RW-GW interaction (including the Holmboe interaction) in the vertical-133

zonal 2-dimensional system which is accompanied with the vertical circula-134

tions induced by the horizontal vorticity and buoyancy perturbations, the135

VRW-GW interaction here is caused by the horizontal circulation induced136

by the vertical vorticity perturbation and the vertical circulation induced by137

the buoyancy perturbation. Although the RW-GW interaction mechanism138

in the vertical-zonal 2-dimensional system is already conceptually clearly139

grasped, the VRW-GW interaction mechanism in the 3-dimensional system140
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cannot be grasped as a straightforward extension of the RW-GW interac-141

tion mechanism. The propagation and interaction of GWs are conceptually142

clearly grasped by the buoyancy-vorticity formulation ( Harnik et al. 2008),143

which we call the BV-thinking. In this paper, we propose a simple concep-144

tual model for the VRW-GW interaction base on the BV-thinking.145

The organization of this paper is as follows. In section 2, the con-146

ceptual model of the VRW-GW interaction is proposed. In section 3, we147

analytically show the possibility of the VRW-GW interaction in the sys-148

tem linearized about a basic vortex. In section 4, in the linear system,149

we numerically obtain the growing solution compatible with the conceptual150

model. In section 5, concluding remarks are given.151

2. Conceptual model of VRW-GW interaction152

2.1 Basic equations and assumptions153

We consider disturbances on a basic axisymmetric vortex. The basic154

vortex and disturbances are described in a cyclindrical coordinate system155

(r, θ, z, t), where r is the radius from the center of the basic vortex, θ is156

the azimuth, z is the height, and t is the time. The fluid is assumed to157

be confined between two rigid horizontal boundaries at z = 0 and z = H.158

Specifically, we assume a stably stratified barotropic Rankine vortex (see159
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Fig. 1) Fig. 1160

ζ = Z (positive constant) for 0 < r ≤ R, and ζ = 0 for R < r < ∞,

(1)

where ζ = ζ(r) = (1/r)d(rv)/dr is the basic vertical vorticity, and v = v(r)161

is the basic azimuthal velocity. The basic angular velocity ω = ω(r) = v/r162

of the vortex in Eq. (1) is given by163

ω =
Z

2
for 0 < r ≤ R, and ω =

ZR2

2r2
for R ≤ r < ∞. (2)

The stable stratification implies that the vertical gradient of the basic buoy-164

ancy b, which is proportional to the basic potential temperature, is positive.165

db

dz
= N2 > 0,

where N is the buoyancy frequency of the basic state, which is assumed to166

be constant. Because of the piecewise uniform distribution of ζ in Eq. (1),167

there is a negative radial gradient dζ/dr < 0 of the basic vertical vorticity168

ζ at r = R.169

dζ

dr
= −Zδ(r −R), (3)

where δ(r) is Dirac’s delta function.170
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The motion of the fluid is governed by the following equations.171

du

dt
+

∂ϕ

∂r
−
(
f +

v

r

)
v = 0,

dv

dt
+

1

r

∂ϕ

∂θ
+
(
f +

v

r

)
u = 0,

dw

dt
+

∂ϕ

∂z
− b = 0,

db

dt
= 0,

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0, (4)

where d/dt = ∂/∂t+u∂/∂r+(v/r)∂/∂θ+w∂/∂z, and the Coriolis parameter172

f is assumed to be constant. The symbols in Eqs. (4) are defined as follows173

: u, v, and w are respectively the radial, azimuthal, and vertical compo-174

nent of velocity, ϕ is the pressure deviation from a quiescent reference state175

divided by the reference density, and b, which is called buoyancy, is the po-176

tential temperature deviation from the quiescent reference state divided by177

the reference potential temperature and multiplied by the gravitational ac-178

celeration. The first equation of Eqs. (4) is the radial momentum equation.179

The second is the azimuthal momentum equations. The third is the verti-180

cal momentum equation. The fourth is the thermodynamic equation. The181

fifth is the mass conservation equation with the Boussinesq approximation.182

10



Linearized about the basic vortex in Eq. (1), Eqs. (4) become183 (
∂

∂t
+ ω

∂

∂θ

)
u′ +

∂ϕ′

∂r
− ξv′ = 0,(

∂

∂t
+ ω

∂

∂θ

)
v′ +

1

r

∂ϕ′

∂θ
+ ζ

a
u′ = 0,(

∂

∂t
+ ω

∂

∂θ

)
w′ +

∂ϕ′

∂z
− b′ = 0,(

∂

∂t
+ ω

∂

∂θ

)
b′ +N2w′ = 0,

1

r

∂

∂r
(ru′) +

1

r

∂v′

∂θ
+

∂w′

∂z
= 0, (5)

where ξ = f + 2ω is the basic inertial parameter, ζ
a
= f + ζ is the basic184

absolute vertical vorticity, and the primed variables are of the disturbance.185

Hereafter, the primes are dropped for the presentation simplicity.186

From Eqs. (5), the equation of disturbance potential vorticity q is de-187

rived.188 (
∂

∂t
+ ω

∂

∂θ

)
q + u

dq

dr
= 0, (6)

where q = N2ζ
a
is the basic potential vorticity, q = N2ζ + ζ

a
∂b/∂z is189

the disturbance potential vorticity, ζ = (1/r)∂(rv)/∂r − (1/r)∂u/∂θ is the190

disturbance vertical vorticity, v is the disturbance azimuthal velocity, u is191

the disturbance radial velocity, and b is the disturbance buoyancy, which192

is proportional to the disturbance potential temperature. From the second193

and third equations of Eqs. (5), the equation of disturbance radial vorticity194
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η is derived.195 (
∂

∂t
+ ω

∂

∂θ

)
η − 1

r

∂b

∂θ
− f

∂u

∂z
= 0, (7)

where η = (1/r)∂w/∂θ− ∂v/∂z is the disturbance radial vorticity, and w is196

the disturbance vertical velocity.197

In order for GWs to exist, the disturbance must have a baroclinic struc-198

ture. This is because a barotropic structure cannot have vertical circulation.199

We assume the simplest, that is, the first baroclinic structure of disturbance,200

having a wavy structure in the azimuthal direction with a wave number201

m (̸= 0).202

a(r, θ, z, t) = Re
[
â(r, t)eimθ

]
cos

πz

H
for a = u, v, ϕ,

a(r, θ, z, t) = Re
[
â(r, t)eimθ

]
sin

πz

H
for a = w, b. (8)

This is of course consistent with the vertical boundary condition, that is,203

with the existence of free-slip rigid horizontal boundaries on z = 0 and204

z = H, and with Eqs. (5). The baroclinic structure in Eqs. (8) implies205

that the amplitude of ζ is maximum on z = 0 and z = H, and that the206

amplitudes of η and b are maximum on z = H/2.207

2.2 VRW208

First, we briefly review the propagation mechanism of VRWs on the209

basic axisymmetric vortex. When the vertical velocity is neglected, the dis-210
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turbance buoyancy b vanishes and Eq. (6) of disturbance potential vorticity211

q is reduced to the equation of disturbance vertical vorticity ζ.212

∂ζ

∂t
= −ω

∂ζ

∂θ
− u

dζ

dr
. (9)

The stretching effect, which is present in the potential vorticity equation213

(5), is absent in the vorticity equation (9). The negative radial gradient214

dζ/dr < 0 at r = R in Eq. (3) implies the generation of vertical vorticity215

perturbation ζ > 0 (ζ < 0) by the radially outward (inward) advection of216

the basic vertical vorticity ζ across r = R. On the assumption of the first217

baroclinic structure in Eqs. (8), the vertical vorticity perturbation ζ has218

the maximum amplitude on z = 0 and z = H. We display ζ on z = 0 in a219

rectangular diagram in which the abscissa is the θ axis pointing to the left,220

and the ordinate is the r axis pointing upwards (see Fig. 2).221 Fig. 2

We assume a wavy disturbance with ζ > 0 and ζ < 0 (see the top part of222

Fig. 2). In Fig. 2, the black curves are the Iso-(ζ+ζ) lines. The disturbance223

is advected downstream (that is, cyclonically) by the basic vortex flow. This224

is expressed by the first term −ω∂ζ/∂θ on the RHS of Eq. (9). In addition225

to the cyclonic advection, the disturbance azimuthally propagates. The226

reason is as follows. Around ζ > 0 and ζ < 0, there are induced cyclonic227

and anticyclonic horizontal circulations, respectively. The associated radial228

velocity perturbation u (black arrows ↑↓↑ in the top part of Fig. 2) advects229

the basic vertical vorticity ζ. This is expressed by the second term −udζ/dr230
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on the RHS of Eq. (9). The radial advection of ζ generates new ζ > 0 and231

ζ < 0 on the upstream side of the old ζ > 0 and ζ < 0, respectively232

(see the bottom part of Fig. 2). As a result, the disturbance propagates233

upstream (that is, anticyclonically) at r = R. The disturbance on z = H234

also propagates upstream. This is the VRW. Because of the dominance of235

cyclonic advection by the basic angular velocity ω > 0 over the anticyclonic236

propagation due to the negative radial gradient dζ/dr < 0, the VRW moves237

cyclonically at r = R.238

2.3 GW239

Second, we briefly review the propagation mechanism of GWs. The240

stable stratification N2 = db/dz > 0 implies the generation of buoyancy241

perturbation b > 0 (b < 0) by the downward (upward) advection of the242

basic buoyancy b. Because of this, there may exist several kinds of GWs.243

Here we consider a GW which is generated by the cyclonically moving VRW244

at r = R, and is cyclonically propagating at some outer radius r = R̃ (> R).245

When the radial velocity u is neglected, the motion becomes (θ, z) two246

dimensional, and Eq. (7) of disturbance radial vorticity η is reduced to the247

two dimensional form. This is given together with the fourth equation of248
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Eqs. (5) by249

∂η

∂t
= −ω

∂η

∂θ
+

1

r

∂b

∂θ
, (10)

∂b

∂t
= −ω

∂b

∂θ
− w

db

dz
. (11)

Because of the first baroclinic structure in Eqs. (8), the η and b perturbations250

vanish on z = 0 and z = H, and their amplitude is maximum on z = H/2.251

We display {η, b} in a rectangular diagram, in which the abscissa is the θ252

axis pointing to the left, and the ordinate is the z axis pointing upwards253

(see Fig. 3).254 Fig. 3

We assume a wavy disturbance with {η > 0, b < 0} and {η < 0, b > 0}255

on z = H/2 (see the top part of Fig. 3). In Fig. 3, the black curves are the256

Iso-(b+ b) lines, and red circles with arrows represent η. The disturbance is257

advected downstream (that is, cyclonically) by the basic vortex flow. This258

is expressed by the first terms −ω∂η/∂θ and −ω∂b/∂θ on the RHSs of259

Eqs. (10) and (11). In addition to the cyclonic advection, the disturbance260

azimuthally propagates. The reason is as follows. Around the positive261

and negative radial vorticity perturbations η > 0 and η < 0, there are262

induced clockwise and anticlockwise vertical circulations, respectively. The263

associated vertical velocity perturbation w (red arrows ↓↑↓ in the middle264

part of Fig.3) advects the basic buoyancy b. This is expressed by the second265

term −wdb/dz of the RHS of Eq. (11). The vertical advection of b generates266
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new b < 0 and b > 0 downstream side of the old η > 0 and η < 0, that is,267

of the old b < 0 and b > 0, respectively (compare the middle part with the268

top part of Fig. 3).269

At the same time, the positive and negative buoyancy perturbations270

b > 0 and b < 0 imply the horizontal gradient of buoyancy force (black271

arrows ↑↓ in the bottom part of Fig. 3). The gradient generates η. This272

is expressed by the second term (1/r)∂b/∂θ on the RHS of Eq. (10). The273

buoyancy gradient generates new η > 0 and η < 0 downstream side of the274

old b < 0 and b > 0, that is, of the old η > 0 and η < 0, respectively275

(compare the bottom part with the top part of Fig. 3).276

As a result, the wavy disturbance with {η > 0, b < 0} and {η < 0, b >277

0} propagates downstream (that is, cyclonically) on z = H/2. This is the278

GW. Since both the advection and propagation are downstream (that is,279

cyclonic), the GW moves cyclonically on z = H/2.280

The cyclonically propagating GW resonantly interacts with the anti-281

cyclonically propagating VRW as depicted in Subsection 2.4. There exists282

another GW with b and η in phase which propagates anti-cyclonically with283

respect to the basic flow and does not directly resonantly interact with the284

anti-cyclonically propagating VRW. However, the anti-cyclonically propa-285

gating GW may indirectly contribute to the resonant VRW-GW interaction286

as in the case of the resonant interaction between GWs (Rabinovich et al.287
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2011).288

2.4 VRW-GW interaction289

We assume weak vertical motion in the central region near r = R and290

weak radial motion in the outer region near r = R̃ so that the above men-291

tioned VRW at r = R and GW at r = R̃ can basically exist. Because of the292

first baroclinic structure in Eqs. (8), the amplitude of the VRW is maximum293

on z = 0 and z = H. The vertical vorticity perturbation ζ of the lower VRW294

is opposite-signed to that of the upper VRW. While, the amplitude of the295

GW is maximum on z = H/2. Since the VRW anticyclonically propagates296

and the GW cyclonically propagates, they are counter-propagating to each297

other. Further, since both the VRW and GW move cyclonically, they may298

satisfy Fjørtoft’s condition for instability, and they may be phase-locked299

with each other. Here we assume that the counter-propagating VRW and300

GW are phase-locked with phase difference π/2. Comoving with the phase-301

locked VRW and GW, we display the disturbance in a rectangular diagram302

consisting of three parts in Fig. 4. The corresponding 3-dimensional and303

plan views are depicted in Fig. 5, and Fig. 6, respectively.304 Fig. 4

Fig. 5

Fig. 6

In the top, middle, and bottom parts of Fig. 4, the abscissa is the θ axis305

pointing to the left. In the top part, the vertical vorticity perturbation ζ of306

the upper VRW at r = R is depicted. The ordinate is the r axis pointing307
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downwards. The black curve is the Iso-(ζ + ζ) line.308

In the middle part, the radial vorticity perturbation η and buoyancy309

perturbation b of the GW at r = R̃ are depicted. The ordinate is the z axis310

pointing upwards. The black curve is the Iso-(b+ b) line, and the red circles311

with arrows represent η.312

In the bottom part, the vertical vorticity perturbation ζ of the lower313

VRW at r = R is depicted. The ordinate is the r axis pointing upwards.314

The black curve is the Iso-(ζ + ζ) line.315

The upper and lower ζ of VRWs at r = R induce radial velocities u > 0316

and u < 0 (black arrows ↑↓↑ in the top and bottom parts of Fig. 4).317

The radial velocities u > 0 and u < 0 generate vertical divergence (VD)318

and convergence (VC) (black circles with VD and with VC) at r = R̃,319

respectively. The upper VC and lower VD cause upward velocity w > 0320

(black short uparrow ⇑ in the middle part of Fig. 4), which increases the321

amplitude of b < 0. In the same way, the upper VD and lower VC cause322

downward velocity w < 0 (black short downarrow ⇓ in the middle of Fig. 4),323

which increases the amplitude of b > 0.324

At the same time, the vertical velocities w > 0 and w < 0 (red arrows325

↓↑↓ in the middle part of Fig. 4) around the middle η generate horizontal326

divergence (HD) and convergence (HC) on the upper and lower levels at327

r = R̃ (red circles with HD and with HC). The upper HD and HC cause328
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inward and outward velocities u < 0 and u > 0 on z = H (red short uparrow329

⇑ and downarrow ⇓ in the top part of Fig. 4), which increase the amplitude330

of the upper ζ < 0 and ζ > 0, respectively. In the same way, the lower HD331

and HC cause inward and outward velocities u < 0 and u > 0 on z = 0 (red332

short downarrow ⇓ and uparrow ⇑ in the bottom part of Fig. 4), which333

increase the amplitude of the lower ζ < 0 and ζ > 0, respectively.334

As a result, the VRW and GW mutually reinforce and grow.335

3. Analytical consideration336

In this section, the possibility of the resonant VRW-GW interaction is337

analytically shown. Most of the equations of this section (and their defor-338

mation) in themselves are not important or essential. They are presented339

only for the purpose of deriving Equation (36) which shows the possibility340

of the resonant interaction between the central VRW and the outer GW.341

3.1 Nondimensional hydrostatic system342

For the mathematical simplicity, here and hereafter we assume the hy-343

drostatic balance, which means the replacement of the third equation of344

Eqs. (5) with the hydrostatic equation ∂ϕ/∂z = b. Then, the last three345
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equations of Eqs. (5) are combined into one equation,346 (
∂

∂t
+ ω

∂

∂θ

)
∂2ϕ

∂z2
−N2

{
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ

}
= 0. (12)

In the mode assumed in Eqs. (8), the first two equations of Eqs. (5) and347

(12) become348 (
∂

∂t
+ imω

)
û+

∂ϕ̂

∂r
− ξv̂ = 0,(

∂

∂t
+ imω

)
v̂ +

im

r
ϕ̂+ ζ

a
û = 0,(

∂

∂t
+ imω

)
ϕ̂+

N2H2

π2

{
1

r

∂

∂r
(rû) +

im

r
v̂

}
= 0. (13)

We introduce the following nondimensional variables,349

t → 1

Z
t, r → Rr, (ω, ξ, ζ

a
) → Z(ω, ξ, ζ

a
) (û, v̂) → [û](û, v̂), ϕ̂ → [ϕ̂]ϕ̂,

(14)

where Z and R are respectively the central vorticity and radius of the basic350

Rankine vortex in Eq. (1), and [û] and [ϕ̂] are respectively the representative351

absolute values of û and ϕ̂. From the balance in the first two equations of352

Eqs. (13), the representative values [û] and [ϕ̂] are related as353

[ϕ̂] = RZ[û]. (15)
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By the substitution of Eqs. (14) and (15), Eqs. (13) are nondimensionalized354

as follows,355 (
∂

∂t
+ imω

)
û+

∂ϕ̂

∂r
− ξv̂ = 0,(

∂

∂t
+ imω

)
v̂ +

im

r
ϕ̂+ ζ

a
û = 0,(

∂

∂t
+ imω

)
ϕ̂+ γ

{
1

r

∂

∂r
(rû) +

im

r
v̂

}
= 0 with γ =

(
NH

πRZ

)2

, (16)

where the nondimensional basic variables ω, ξ, and ζ
a
are respectively given356

by357

ω =
1

2
for 0 < r < 1, and ω =

1

2r2
for 1 < r < ∞,

ξ = 1 +
f

Z
for 0 < r < 1, and ξ =

1

r2
+

f

Z
for 1 < r < ∞,

ζ
a
= 1 +

f

Z
for 0 < r < 1, and ζ

a
=

f

Z
for 1 < r < ∞. (17)

For a fixed wave number m, the nondimensional equations in Eqs. (16)358

includes two parameters f/Z and γ. We assume a typical tropical cyclone359

at latitude ≈ 20◦ with the central vorticity Z ≈ a few × 10−3 s−1. Then,360

because of f ≈ 5 × 10−5 s−1, the first parameter is estimated as f/Z ≈361

[5× 10−5]/[a few × 10−3]. So, we set362

f

Z
= 0.02

for the numerical calculation in section 4. We assume the Rankine radius363

R ≈ 5×104 m (representative radius of maximum wind) and the fluid depth364
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H ≈ 104 m (representative depth of the troposphere). The representative365

value of the buoyancy frequency is N ≈ 10−2 s−1. However, because of the366

vertical convection together with diabatic heating/cooling in the central367

typhoon region and therearoud, the buyoyancy frequency is reduced there.368

So, we assume 0 < N ≲ 5 × 10−3 s−1. Then, the second parameter is369

estimated as370

0 < γ =

(
NH

πRZ

)2

≲
(

5× 10−3 × 104

π × 5× 104 × [a few× 10−3]

)2

=

(
1

a few × π

)2

≈ 0.02.

3.2 Vorticity and divergence system371

From the first two equations of Eqs. (16), the following vertical vorticity372

and horizontal divergence equations are derived,373 (
∂

∂t
+ imω

)
ζ̂ +

dζ
a

dr
û+ ζ

a
D̂ = 0,(

∂

∂t
+ imω

)
D̂ + ∂̂2ϕ̂+ 2

dω

dr
(imû− v̂)− ξζ̂ = 0, (18)

where ζ̂ = (1/r)(∂/∂r)(rv̂) − (im/r)û is the disturbance vertical vorticity,374

D̂ = (1/r)(∂/∂r)(rû) + (im/r)v̂ is the disturbance horizontal divergence,375

and ∂̂2 = (1/r)(∂/∂r)r(∂/∂r)− (m2/r2) is the horizontal Laplacian opera-376

tor. The disturbance horizontal velocity (û, v̂), which is assumed to vanish377

at infinity, can be decomposed into the rotational component (uR, vR) and378

divergent component (uD, vD), which are respectively written in terms of379

22



the stream function Ψ and the velocity potential Φ as380

û = uR + uD = − im

r
Ψ+

∂Φ

∂r
, v̂ = vR + vD =

∂Ψ

∂r
+

im

r
Φ. (19)

The disturbance vertical vorticity ζ̂ and horizontal divergence D̂ are respec-381

tively expressed in terms of the stream function Ψ and the velocity potential382

Φ as383

ζ̂ = ∂̂2Ψ and D̂ = ∂̂2Φ. (20)

By the inversion of Eqs. (20), the stream function Ψ and the velocity po-384

tential Φ are respectively expressed in terms of the Green function G(r, r′)385

as functionals of ζ̂ and D̂,386

Ψ(r, t) =

∫ ∞

0

dr′G(r, r′)ζ̂(r′, t) and Φ(r, t) =

∫ ∞

0

dr′G(r, r′)D̂(r′, t),

(21)

where the Green function is the solution of387

∂̂2G(r, r′) = δ(r−r′) under boundary conditions lim
r→0

G(r, r′) < ∞ and lim
r→∞

G(r, r′) = 0,

and is given by388

G(r, r′) = − r′

2m

( r

r′

)m

for r < r′, and G(r, r′) = − r′

2m

(
r′

r

)m

for r > r′.

(22)
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Substituting Eqs. (19) and (21) into Eqs. (18), together with the third389

equation of Eqs. (16), gives a closed system for ζ̂, D̂, and ϕ̂,390 (
∂

∂t
+ imω

)
ζ̂(r, t)− im

r

dζ
a

dr

∫ ∞

0

dr′G(r, r′)ζ̂(r′, t)

+
dζ

a

dr

∂

∂r

∫ ∞

0

dr′G(r, r′)D̂(r′, t) + ζ
a
D̂(r, t) = 0, (23)(

∂

∂t
+ imω

)
D̂(r, t) + ∂̂2ϕ̂(r, t) + i2m

dω

dr

(
∂

∂r
− 1

r

)∫ ∞

0

dr′G(r, r′)D̂(r′, t)

+ 2
dω

dr

(
m2

r
− ∂

∂r

)∫ ∞

0

dr′G(r, r′)ζ̂(r′, t)− ξζ̂(r, t) = 0,

(24)(
∂

∂t
+ imω

)
ϕ̂(r, t) + γD̂(r, t) = 0. (25)

3.3 Equation of VRW391

Eliminating the horizontal divergence D̂ from the first equation of Eqs. (18)392

and Eq. (25) gives the potential vorticity equation.393 (
∂

∂t
+ imω

)
q̂ +

dq

dr
û = 0, (26)

where q = γζ
a
is the basic potential vorticity, and q̂ = γζ̂ − ζ

a
ϕ̂ is the394

disturbance potential vorticity. For the assumed Rankine vortex in Eqs. (1),395

the basic absolute vertical vorticity ζ
a
= ζ + f/Z is piecewise uniform and396

has a singular radial gradient in Eq. (3), and so the basic potential vorticity397

q = γζ
a
has the same singularity,398

dζ
a

dr
= −δ(r − 1) and

dq

dr
= −γδ(r − 1). (27)
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From Eqs. (26) and (27), the potential vorticity perturbation q̂(r, t) consists399

of a singular part q̂R(t)δ(r − 1) and a nonsingular part q̃(r, t),400

q̂(r, t) = q̂R(t)δ(r − 1) + q̃(r, t).

The singular part comes from the singular part ζ̂R(t)δ(r− 1) of the vertical401

vorticity perturbation,402

ζ̂(r, t) = ζ̂R(t)δ(r − 1) + ζ̃(r, t), (28)

which is caused by the piecewise uniform distribution of the basic vertical403

vorticity ζ in Eqs. (1). From Eq. (26), the nonsingular part q̃ = γζ̃ − ζ
a
ϕ̂404

satisfies405 (
∂

∂t
+ imω

)
q̃ = 0.

Under a null initial condition q̃(r, 0) = 0, this equation implies that q̃(r, t) =406

0. The null initial condition is naturally assumed since a perturbation q̂ ̸=407

0 is not generated by the displacement of fluid particles in the region of408

uniform q. In other words, the non-zero perturbation q̂ can be generated409

only by fluid particles crossing r = 1, resulting in the singular perturbation.410

The vanishing q̃(r, t) = 0 implies that411

ζ̃(r, t) =
1

γ
ζ
a
ϕ̂(r, t). (29)
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Substituting Eq. (28) into Eq. (23), and calculating limϵ→0

∫ 1+ϵ

1−ϵ
dr (· · · )412

gives413 {
∂

∂t
+ imω(1)

}
ζ̂R(t) + imG(1, 1)ζ̂R(t)

+ im

∫ ∞

0

dr′ G(1, r′)ζ̃(r′, t)−
∫ ∞

0

dr′
[
∂G(r, r′)

∂r

]
r=1

D̂(r′, t) = 0.

(30)

Further substituting Eqs. (22) and (29) into Eq. (30) gives414

∂

∂t
ζ̂R(t) +

im

2
ζ̂R(t)−

i

2
ζ̂R(t) =

i

2γ

(
1 +

f

Z

)∫ 1

0

dr r1+mϕ̂(r, t) +
1

2

∫ 1

0

dr r1+mD̂(r, t)

+
i

2γ

f

Z

∫ ∞

1

dr r1−mϕ̂(r, t)− 1

2

∫ ∞

1

dr r1−mD̂(r, t),

(31)

where ω(1) = 1/2, ζ
a
= 1+f/Z for 0 < r < 1, and ζ

a
= f/Z for 1 < r < ∞415

were used. This is the equation of the VRW on r = 1. The second term on416

the LHS of Eq. (31) represents the cyclonic advection by the basic angular417

velocity ω(1) = 1/2. The third term represents the anticyclonic propagation418

due to the basic vertical vorticity gradient dζ
a
/dr = −δ(r − 1). The terms419

on the RHS of Eq. (31) represent the interaction between the VRW on r = 1420

and the GW in the inner 0 < r < 1 and outer 1 < r < ∞ regions.421

3.4 Equation of GW422

Apart from the singular part, which leads to Eq. (31), Eq. (23) becomes423

identical to Eq. (25) because of Eq. (29). As for the singular part of Eq. (24),424
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substituting Eq. (28) into Eq. (24), and calculating limϵ→0

∫ 1+ϵ

1−ϵ
dr (· · · ) gives425

lim
ϵ→0

[
∂ϕ̂(r, t)

∂r

]1+ϵ

1−ϵ

= ξ(1)ζ̂R(t) =

(
1 +

f

Z

)
ζ̂R(t). (32)

So, the first radial derivative of ϕ̂(r, t) is discontinuous at r = 1. Substi-426

tuting Eqs. (28) and (29) into Eq. (24), together with Eq. (25), for r ̸= 1427

gives428 (
∂

∂t
+ imω

)
D̂(r, t) + ∂̂2ϕ̂(r, t) + i2m

dω

dr

(
∂

∂r
− 1

r

)∫ ∞

0

dr′G(r, r′)D̂(r′, t)

+ 2
dω

dr

(
m2

r
− ∂

∂r

)
G(r, 1)ζ̂R(t)

+
2

γ

dω

dr

(
m2

r
− ∂

∂r

)∫ ∞

0

dr′G(r, r′)ζ
a
(r′)ϕ̂(r′, t)− ζ

a
ξ

γ
ϕ̂(r, t) = 0,(

∂

∂t
+ imω

)
ϕ̂(r, t) + γD̂(r, t) = 0 for r ̸= 1. (33)

Further substituting Eqs. (22) into Eqs. (33) gives429

∂

∂t

D̂(r, t)

ϕ̂(r, t)

+

imω 0

0 imω


D̂(r, t)

ϕ̂(r, t)

+

0 ∂̂2 − ζ
a
ξ

γ

γ 0


D̂(r, t)

ϕ̂(r, t)



+

i2m
dω

dr

(
∂

∂r
− 1

r

)∫ ∞

0

dr′G(r, r′)
2

γ

dω

dr

(
m2

r
− ∂

∂r

)∫ ∞

0

dr′G(r, r′)ζ
a
(r′)

0 0


D̂(r′, t)

ϕ̂(r′, t)



=

(m+ 1)
dω

dr
r−(m+1)ζ̂R(t)

0

 for r ̸= 1. (34)

This is the equation of the GW. The second term on the LHS of Eq. (34)430

represents the cyclonic advection by the basic angular velocity ω(r). The431
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third term represents the azimuthal (and radial) propagation due to the432

stable stratification γ > 0, and the inertial oscillation due to ζ
a
ξ > 0. The433

fourth term represents the effect of dω/dr ̸= 0. The term on the RHS of434

Eq. (34) represents the interaction between the GW and the VRW on r = 1.435

Since dω/dr = 0 in the inner region 0 < r < 1, the terms including dω/dr436

vanish there. In particular, the interaction term exists only in the outer437

region 1 < r < ∞.438

3.5 Interaction between VRW and GW439

Since the RHS of Eq. (34), which represents the interaction between the440

VRW and GW, exists only in the outer region, the mutual interaction is441

expected to take place between the VRW on r = 1 and the GW in the442

outer region 1 < r < ∞. From Eqs. (31) and (34), the primary interaction443

between the VRW on r = 1 and the GW in the outer region 1 < r < ∞ is444

described by the following equation,445

∂

∂t
ζ̂R(t) + · · · = −1

2

∫ ∞

1

dr r1−mD̂(r, t),

∂

∂t
D̂(r, t) + · · · = −(m+ 1)

∣∣∣∣dω(r)dr

∣∣∣∣ r−(m+1)ζ̂R(t). (35)
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Differentiating the first equation of Eqs. (35) with respect to time t, and446

then substituting the second equation gives447

∂2

∂t2
ζ̂R(t)+ · · · = σ2ζ̂R(t) with σ2 =

m+ 1

2

∫ ∞

1

dr r−2m

∣∣∣∣dω(r)dr

∣∣∣∣ = (
1

2

)2

,

(36)

where dω/dr = −1/r3 was used. Since the constant σ2 = (1/2)2 in Eq. (36)448

is positive, we can expect exponential growth of ζ̂R(t) ∼ eσt = e(1/2)t by the449

interaction.450

The minus signs of the RHSs of Eqs. (35) imply the following. If ζ̂R(t)451

on r = 1 and D̂(r, t) at some radius r̃ > 1 are phase-locked with a phase452

difference π, then they amplify each other, and then they may exponentially453

grow.454

The amplifying mechanism described by the first equation of Eqs. (35)455

is simple. The horizontal convergence D̂(r, t) < 0 at the radius r̃ > 1 (HC456

in Fig. 4) is accompanied with a radially outflow at r = 1 (⇓ in the top457

of Fig. 4, and ⇑ in the bottom of Fig. 4), which advects the basic vertical458

vorticity outward and amplifies the phase-locked positive vertical vorticity459

perturbation ζ̂R(t) > 0 at r = 1 (ζ > 0 in Fig. 4). In the same way, the460

horizontal divergence D̂(r, t) > 0 at the radius r̃ > 1 (HD in Fig. 4) is461

accompanied with a radially inflow at r = 1 (⇑ in the top of Fig. 4, and ⇓ in462

the bottom of Fig. 4), which advects the basic vertical vorticity inward and463

amplifies the phase-locked negative vertical vorticity perturbation ζ̂R(t) < 0464
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at r = 1 (ζ < 0 in Fig. 4).465

While, the amplifying mechanism described by the second equation of466

Eqs. (35) is somewhat complicated. Let us consider the lowermost level467

on z = 0. The positive vertical vorticity perturbation ζ̂R(t) > 0 at r = 1468

on z = 0 (ζ > 0 in the bottom of Fig. 4) is accompanied with a cyclonic469

horizontal circulation (↓↑ in the bottom of Fig. 4). The radially outflow470

branch of the circulation (the rightmost ↑ in the bottom of Fig. 4), which471

lies one quarter wavelength upstream, may cause updraft at the radius472

r̃ > 1 (⇑ in the middle of Fig. 4). The updraft amplifies the negative473

buoyancy perturbation (i.e., negative potential temperature perturbation)474

(b < 0 in the middle of Fig.4) of the phase-locked gravity wave which475

is anticyclonically propagating. The anticyclonically propagating negative476

buoyancy perturbation is accompanied with a vertical circulation (↑↓ in477

the middle of Fig. 4). The updraft branch of the circulation (↑ in the478

middle of Fig. 4), which lies one quarter wavelength downstream, amplifies479

the phase-locked horizontal convergence D̂(r, t) < 0 at the radius r̃ > 1480

on z = 0 (HC in the bottom of Fig. 4). In the same way, the negative481

vertical vorticity perturbation ζ̂R(t) < 0 at r = 1 on z = 0 (ζ < 0 in the482

bottom of Fig. 4) is accompanied with an anticyclonic horizontal circulation483

(↑↓ in the bottom of Fig.4). The radially inflow branch of the circulation484

(↓ in the bottom of Fig. 4), which lies one quarter wavelength upstream,485
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may cause downdraft at the radius r̃ > 1 (⇓ in the middle of Fig. 4).486

The downdraft amplifies the positive buoyancy perturbation (i.e., positive487

potential temperature perturbation) (b > 0 in the middle of Fig. 4) of488

the phase-locked gravity wave which is anticyclonically propagating. The489

anticyclonically propagating positive buoyancy perturbation is accompanied490

with a vertical circulation (↓↑ in the middle of Fig. 4). The downdraft491

branch of the circulation, which lies one quarter wavelength downstream,492

amplifies the phase-locked horizontal divergence D̂(r, t) > 0 at the radius493

r̃ > 1 on z = 0 (HD in the bottom of Fig. 4). Also on the uppermost level494

z = H, the similar reasoning is applied.495

4. Numerical calculation496

In this section, we numerically obtain a growing solution whose spatial497

pattern is compatible with the conceptual model of the resonant VRW-GW498

interaction proposed in Section 2. Although this section includes many499

equations and their deformation and rearrangement, they themselves are500

not important or essential. They are presented only for the purpose of501

displaying figures in Fig. 7 which confirm the validity of the proposed con-502

ceptual model.503

For the assumed Rankine-vortex in Eqs. (1), the vorticity perturbation504

whose radial dependence is expressed in terms of Dirac’s delta function is505

31



generated by the singular radial gradient of the basic vorticity in Eq. (3).506

The singular dependence cannot be numerically represented. So, in order to507

numerically obtain the solution of the nondimensional linearized equations508

(16), we replace the discontinuous basic Rankine vortex in Eqs. (1) by the509

following continuous Rankine-like vortex,510

ζ = Z for 0 < r < R− ε,

ζ =
Z(R + ε)

2ε
− Z

2ε
r for R− ε < r < R + ε,

ζ = 0 for R + ε < r < ∞, (37)

where we assume ε/R ≈ 1/10. Instead of Eqs. (2), the basic angular velocity511

ω = ω(r) is given by512

ω =
Z

2
for 0 < r < R− ε,

ω = − Z

6ε
r +

Z(R + ε)

4ε
− Z(R− ε)3

12ε

1

r2
for R− ε < r < R + ε,

ω =
Z(3R2 + ε2)

6

1

r2
for R + ε < r < ∞.

The nondimensional linearized equations (16) are unchanged except that513

the nondimensional basic variables ω, ξ, and ζ
a
in Eqs. (17) are respectively514

replaced by515

ω =
1

2
for 0 < r < 1− ε̃,

ω = − 1

6ε̃
r +

1 + ε̃

4ε̃
− (1− ε̃)3

12ε̃

1

r2
for 1− ε̃ < r < 1 + ε̃,

ω =
3 + ε̃2

6

1

r2
for 1 + ε̃ < r < ∞,
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516

ξ = 1 +
f

Z
for 0 < r < 1− ε̃,

ξ = − 1

3ε̃
r +

1 + ε̃

2ε̃
− (1− ε̃)3

6ε̃

1

r2
+

f

Z
for 1− ε̃ < r < 1 + ε̃,

ξ =
3 + ε̃2

3

1

r2
+

f

Z
for 1 + ε̃ < r < ∞,

ζ
a
= 1 +

f

Z
for 0 < r < 1− ε̃,

ζ
a
=

1 + ε̃

2ε̃
− 1

2ε̃
r +

f

Z
for 1− ε̃ < r < 1 + ε̃,

ζ
a
=

f

Z
for 1 + ε̃ < r < ∞, (38)

where ε̃ = ε/R.517

The nondimensional linearized equations (16) with Eqs. (38) is numer-518

ically solved with the discretization in the radial direction, 0 = r0 < r1 <519

r2 < · · · < rN < rN+1 < ∞. The variables are radially discretized as520

â(r0, t) = â0(t), â(r1, t) = â1(t), · · · , â(rN , t) = âN(t), â(rN+1, t) = âN+1(t),

(39)

where a = u, v, or ϕ. The derivatives are so discretized that521 [
∂â

∂r

]
r=rn

=
ân+1 − ân−1

rn+1 − rn−1

for 1 ≤ n ≤ N with â0 = âN+1 = 0, (40)

where a = u or ϕ. We set N = 100 and discretize the radial direction so that522

the area of each annulus rn−1 < r < rn (n = 1, 2, · · · , N +1) is equal to one523

another. Specifically, we set rn =
√

n/20 (n = 0, 1, 2, · · · , N,N + 1) and524

r20 = 1 is the nondimensionalized Rankine radius. Substituting Eqs. (39)525
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and (40) into Eqs. (16) gives526

∂ûn

∂t
= −imωnûn + ξnv̂n −

ϕ̂n+1 − ϕ̂n−1

rn+1 − rn−1

,

∂v̂n
∂t

= −imωnv̂n − ζ
a

nûn −
im

rn
ϕ̂n,

∂ϕ̂n

∂t
= −imωnϕ̂n − γ

{
ûn

rn
+

ûn+1 − ûn−1

rn+1 − rn−1

+
im

rn
v̂n

}
for 1 ≤ n ≤ N,

where ωn = ω(rn) etc. These can be rewritten in the following vector form,527

∂

∂t
|Û(t)⟩ = A|U(t)⟩, (41)

where |Û(t)⟩ is a 3N column vector and A is a 3N × 3N matrix.528

|Û(t)⟩ =



û1(t)

v̂1(t)

ϕ̂1(t)

·

·

·

ûN(t)

v̂N(t)

ϕ̂N(t)



and A =



B1 −C1 0 0 0 · · · 0

C2 B2 −C2 0 0 · · · 0

0 C3 B3 −C3 0 · · · 0

· · ·

· · ·

· · ·

0 · · · 0 CN−2 BN−2 −CN−2 0

0 · · · 0 0 CN−1 BN−1 −CN−1

0 · · · 0 0 0 CN BN


(42)
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where529

Bn =


−imωn ξn 0

−ζ
a

n −imωn −im/rn

−γ/rn −iγm/rn −imωn

 and Cn =


0 0 1/(rn+1 − rn−1)

0 0 0

γ/(rn+1 − rn−1) 0 0

 .

The solution to Eq. (41) with an initial values |Û(0)⟩ is given by530

|Û(t)⟩ =
3N∑
n=1

eλnt
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩, (43)

where λn (n = 1, 2, · · · , 3N) are the eigenvalues of the matrix A in Eqs. (42),531

and |Rn⟩ and ⟨Ln| are the corresponding right and left eigenvectors, respec-532

tively. The right and left eigenvectors are 3N column and 3N row vectors,533

respectively. The dyadic product |Rn⟩⟨Ln| in the numerator on the RHS of534

Eq. (43) is a 3N×3N matrix, and the inner product ⟨Ln|Rn⟩ in the denomi-535

nator is a scalar. By the definition of the eigenvalues and right eigenvectors536

A|Rn⟩ = λn|Rn⟩ (n = 1, 2, · · · , 3N), and by the completeness relation of537

the right and left eigenvectors
∑3N

n=1 |Rn⟩⟨Ln|
/
⟨Ln|Rn⟩ = I3N( which is an538

identity matrix ), we can easily see that the expression in Eq. (43) is indeed539

the solution to Eq. (41) with the prescribed initial value |Û(0)⟩.540

∂

∂t

3N∑
n=1

eλnt
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩ =
3N∑
n=1

eλntλn
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩ = A
3N∑
n=1

eλnt
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩,[
3N∑
n=1

eλnt
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩

]
t=0

=
3N∑
n=1

|Rn⟩⟨Ln|
⟨Ln|Rn⟩

|Û(0)⟩ = |Û(0)⟩.
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The solution to Eq. (41) with an initial value |Û(0)⟩ is also written as541

|Û(t)⟩ = eAt|Û(0)⟩ =
∞∑
n=0

tn

n!
An|Û(0)⟩. (44)

We can also easily see that the expression in Eq. (44) is indeed the solution542

to Eq. (41) with the prescribed initial value |Û(0)⟩.543

∂

∂t

∞∑
n=0

tn

n!
An|Û(0)⟩ =

∞∑
n=1

tn−1

(n− 1)!
An|Û(0)⟩ = A

∞∑
n=0

tn

n!
An|Û(0)⟩,[

∞∑
n=0

tn

n!
An|Û(0)⟩

]
t=0

=
∞∑
n=0

0n

n!
An|Û(0)⟩ = |Û(0)⟩.

The equivalence of the expressions Eqs. (43) and (44) is easily checked by544

the use of the spectral decomposition of A and the orthogonality of ⟨Ln|545

and |Rn⟩,546

A =
3N∑
n=1

λn
|Rn⟩⟨Ln|
⟨Ln|Rn⟩

and ⟨Ln|Rm⟩ = 0 if n ̸= m.

For growing solutions to exist, there must exist at least one eigenvalue with547

positive real part.548

Let λM be the eigenvalue with the largest positive real part, and |RM⟩549

and ⟨LM | be the corresponding right and left eigenvectors, respectively.550

Then, as t → ∞, the term of λM in Eq. (43) becomes dominant,551

lim
t→∞

|Û(t)⟩ ∼ eλM t |RM⟩⟨LM |
⟨LM |RM⟩

|Û(0)⟩ = eλM t ⟨LM |Û(0)⟩
⟨LM |RM⟩

|RM⟩ ∝ eλM t|RM⟩.

The spatial structure and temporal evolution of the growing disturbance552

is determined by eλM t|RM⟩. Since the disturbance in the physical space is553

36



given by Eqs. (8), the structure, the growth rate, and angular phase velocity554

of the growing eigen-disturbance are respectively given by,555

the structure = Re
[
eimθ|RM⟩

]
cos πz (after nondimensionalization z → Hz),

(45)

the growth rate = Re [λM ] , (46)

the angular phase velocity = − 1

m
Im [λM ] . (47)

The eigenvalue λM and right eigenvector |RM⟩ are numerically calcu-556

lated. In the calculation, in order to suppress reflection, the variables are557

forced to linearly decrease to zero near the lateral boundary. The structure558

of the growing eigen-disturbance given by Eq. (45) with azimuthal wave559

number m = 2 is shown in Fig. 7, which is so displayed as to correspond560

to Fig. 6 of the conceptual model in subsection 2.4. The value of the first561

parameter f/Z is so set f/Z = 0.02 as stated at the end of subsection 3.1.562

The value of the second parameter γ is so set γ = 0.006 that the growth rate563

(i.e., the value of Re[λM ]) becomes maximum in the range of 0 < γ < 0.02564

for the fixed f/Z = 0.02.565 Fig. 7

In Fig. 7, the disturbance buoyancy b = ∂ϕ/∂z is shown instead of566

ϕ. The disturbance b̂ in the mode assumed in Eqs. (8) is related to ϕ̂ as567

b̂ = −ϕ̂ after the nondimensionalization in Eqs. (14), and z → Hz and568

b̂ → [b̂]b̂ with [b̂] = (π/H)[ϕ̂]. Further, in order to display the VRW, the569
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disturbance potential vorticity q is shown instead of the disturbance vertical570

vorticity ζ. The disturbance q̂ in the mode assumed in Eqs. (8) is related571

to ζ̂ as q̂ = γζ̂ − ζ
a
ϕ̂ after the nondimensionalization in Eqs. (14) and (38).572

The reason of the preference for q than ζ is that another ζ perturbation573

associated with the GW is also present away from the Rankine radius in574

addition to the ζ perturbation associated with the VRW at (and near) the575

Rankine radius. From Eq. (29), the GW is necessarily accompanied with576

the vertical vorticity perturbation.577

The disturbance potential vorticity q in (a) and (c) of Fig. 7, and the578

outer horizontal divergence HDout in (a) and (c), and outer buoyancy bout in579

(b), which are located outside of the Rankine radius, are so structured as to580

be compatible with the conceptual model of VRW-GW interaction depicted581

in Figs. 4, 5, and 6. That is, q and HDout on z = 0, 1 are phase-locked with582

a phase difference π, and HDout on z = 0(z = 1) is located one quarter583

wave length downstream (upstream) of bout on z = 1/2.584

In addition to the outer perturbations HDout and bout, there exist also585

other inner perturbations HDin and bin in Fig. 7, which are located in the586

vicinity of the Rankine radius. From Eq. (32), the exponential growth of ζ587

at the Rankine radius (i.e., the growth of VRW) is necessarily accompanied588

with the exponential growth of ϕin there, and so the exponential growth589

of bin = ∂ϕin/∂z there. For bin to be part of the form-preserving eigen-590
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disturbance, there must exist also HDin to form an azimuthally propagating591

GWin. The GWin propagates anticyclonically and is strongly advected cy-592

clonically by the basic vortex so that it becomes part of the form-preserving593

eigen-disturbance slowly moving cyclonically. Indeed, the anticyclonic prop-594

agation of the GWin is seen in Fig. 7. That is, HDin on z = 0 (z = 1) lies595

one quarter wave length upstream (downstream) of bin on z = 1/2.596

The numerically calculated growth rate in Eq. (46) and the angular phase597

velocity in Eq. (47) of the growing eigen-disturbance are Re [λM ] ≈ 0.05 and598

−(1/2)Im [λM ] ≈ 0.34, respectively. The growth rate is small compared599

with the growth rate and angular phase velocity of the growing disturbance600

due to the VRW-VRW interaction which are O(1) or O(Z) s−1 in the di-601

mensional units.602

5. Concluding remarks603

In this paper, we proposed a simple conceptual model of the resonant604

interaction between the VRW and GW on a typhoon-like basic vortex. Fur-605

ther, we analytically showed the possibility of the interaction, and numeri-606

cally obtained the growing solution in the system linearized about the basic607

vortex.608

In order to make the problem simplest and to grasp the essential mech-609

anism, although the reality is rather complicated and intricate, the basic610

39



vortex was assumed to be a stably stratified barotropic Rankine vortex,611

and the disturbance on the vortex was assumed to be of the first baroclinic612

vertical mode and of the azimuthal wave number m ̸= 0 mode.613

The central VRW, which is located at the jump radius of the Rankine614

vortex, moves cyclonically because of the strong cyclonic advection by the615

basic vortex flow and weak anticyclonic propagation (“propagation” means616

“propagation relative to the fluid”) due to the radial inward gradient of617

the basic vertical vorticity. The outer GW, which is assumed to be located618

outside of the jump radius of the Rankine vortex, moves also cyclonically619

because of the weak cyclonic advection by the basic vortex flow and cy-620

clonic propagation due to the stable stratification. The VRW and GW are621

counter-propagating to each other, and therefore satisfy Rayleigh’s condi-622

tion for instability. Further, both of them move cyclonically, and therefore623

may satisfy Fjørtoft’s condition for instability, that is, may be phase-locked624

with each other. If the counter-propagating VRW and GW become phase-625

locked, they resonantly interact with each other and grow. We assumed the626

existence of such an outer GW that can be phase-locked with the central627

VRW, and we considered the resonant interaction between them based on628

the BV-thinking.629

As is already known, the resonant interaction between RWs (or vortic-630

ity waves in general) and GWs (i.e., buoyancy waves) in a vertical-zonal631
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system is conceptually clearly grasped based on the BV-thinking (e.g., Car-632

penter et al. 2011). The RW in the 2-dimensional system is a horizontal633

vorticity wave and is accompanied with vertical circulation. The GW in634

the 2-dimensional system is a buoyancy wave and is also accompanied with635

vertical circulation. In the resonant interaction between them, the vertical636

circulation of RW amplifies the GW, and simultaneously the vertical circu-637

lation of GW amplifies the RW, resulting in the resonant growth. On the638

other hand, the VRW and GW of the present problem interact with each639

other in a 3-dimensional system. As in the vertical-zonal 2-dimensional640

problem, the GW is a buoyancy wave, and is accompanied with vertical cir-641

culation. However, different from the vertical-zonal 2-dimensional problem,642

the VRW in the 3-dimensional system is a vertical vorticity wave, and is643

accompanied with horizontal circulation. Although the 3-dimensional res-644

onant interaction including vertical and horizontal circulations cannot be645

understood as a straightforward extension of the 2-dimensional resonant646

interaction including only vertical circulations, it can be also conceptually647

grasped based on the BV-thinking as presented in Section 2. That is, the648

horizontal circulation of VRW amplifies the GW, and simultaneously the649

vertical circulation of GW amplifies the VRW. Specifically, in the proposed650

conceptual model presented in Section 2, the central VRW, whose ampli-651

tude is maximum on the lower and upper levels, is expressed in terms of652
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the disturbance vertical vorticity ζ. The horizontal circulation around ζ653

advects the basic vertical vorticity ζ̄ and generates new ζ. The successive654

generation of ζ makes the VRW propagate anticyclonically. The outer GW,655

whose amplitude is maximum on the middle level, is expressed in terms of656

the disturbance radial vorticity η and the disturbance buoyancy b. The ver-657

tical circulation around η advects the basic buoyancy b̄ (that is, the basic658

potential temperature) and generates new b. At the same time, the az-659

imuthal gradient of b generates new η. The successive mutual generation660

of η and b makes the GW propagate cyclonically. On the assumption of661

phase-lock, the horizontal circulation around ζ induces vertical circulation662

in the outer region which advects b̄ and enhances b. At the same time, the663

vertical circulation around η induces horizontal circulation in the central664

region which advects ζ̄ and enhances ζ. As a result, the VRW and GW665

resonantly grow.666

We analytically examined the system of equations linearized about the667

basic vortex, and showed the possibility of the resonant interaction. The668

VRW in the central region and the GW in the outer region may reinforce669

each other. Further, we numerically obtained the growing solution of the670

linearized system. The growing solution shows the resonant interaction671

structure proposed in the conceptual model, although the growth rate is672

rather small.673
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Because of the smallness of the growth rate, the VRW-GW interaction674

does not come into question in the presence of the VRW-VRW interaction.675

For a typhoon-like vortex with an annulus of high vertical vorticity corre-676

sponding to the eyewall and/or with an annulus of low vertical vorticity677

in the outer region, Rayleigh’s condition for instability of the VRW-VRW678

interaction is satisfied, and VRWs grow by the interaction. The growing679

VRWs near the eyewall are supposed to be related with the eye deforma-680

tion and the track meandering. While, those near the outer annulus of low681

vertical vorticity are supposed to be related with the eye replacement cy-682

cle. In these cases, the VRW-GW interaction, which may exist, has little683

contribution to the growth of VRWs. On the other hand, in the case of a684

monopolar vortex, the radial gradient of the basic vertical vorticity is ev-685

erywhere negative, and therefore Rayleigh’s condition for instability of the686

VRW-VRW interaction is not satisfied. As a result, VRWs cannot grow by687

the interaction. However, VRWs can still grow by the VRW-GW interaction688

even for a monopolar vortex. The growing VRWs by VRW-GW interaction689

may play the role of those by VRW-VRW interaction, instead.690

The growing eigen-disturbance in our numerical calculation has an inner691

GW in addition to the outer GW which resonantly interacts with the central692

VRW. Although the inner GW propagates anticyclonically, it is advected693

cyclonically by the strong basic angular velocity, and moves cyclonically.694
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Because of the cyclonic movement, the inner GW is phase-locked with the695

outer GW which moves also cyclonically, and the two GWs constitute the696

form-preserving eigen-disturbance. The inner and outer GWs propagate an-697

ticyclonically and cyclonically, respectively, that is, are counter-propagating698

to each other, and therefore they satisfy Rayleigh’s condition for instability.699

The two GWs satisfying Rayleigh’s condition are phase-locked with each700

other. Hence, the interaction between them (GW-GW interaction) may701

contributes to the growth of the eigen-disturbance. If so, what growing702

mechanism the GW-GW interaction has, and what relation the GW-GW703

interaction has to the VRW-GW interaction? To examine these, it belong704

to our future study.705

The inner GW of the numerically calculated growing eigen-disturbance706

is colocated and comoving with the VRW in the vicinity of the Rankine707

radius. The pair of VRW and GW is reminiscent of the mixed vortex708

Rossby-gravity wave of Zhong et al. (2009). To examine whether they have709

any relation or not, it belongs also to our future study.710
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Fig. 1. Stably stratified barotropic Rankine vortex. ζ is the basic vertical
vorticity. b is the basic buoyancy.
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Fig. 2. Propagation of VRW at r = R. The black curves are the Iso-
(ζ+ζ) lines. The black arrows ↑↓↑ represent the horizontal circulations
induced by the vertical vorticity perturbation ζ.
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Fig. 3. Propagation of GW at r = R̃. The black curves are the Iso-
(b+ b) lines. The red circles with arrows represent the radial vorticity
perturbation η. The red arrows ↓↑↓ represent the vertical circulations
induced by η. The black arrows ↑↓ represent the buoyancy force caused
by b.
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Fig. 4. Interaction between VRW at r = R and GW at r = R̃ (> R).
The black curves in the top and bottom are the Iso-(ζ + ζ) lines. The
black curve in the middle is the Iso-(b + b) line. The red circles with
arrows in the middle represent the radial vorticity perturbations η.
The black arrows ↑↓↑ in the top and bottom represent the horizontal
circulations induced by the vertical vorticity perturbations ζ. The red
arrows ↓↑↓ in the middle represent the vertical circulations induced by
η. The black circles with VD and VC respectively represent the vertical
divergence and convergence generated by the horizontal circulations.
The red circles with HD and HC respectively represent the horizontal
divergence and convergence generated by the vertical circulations. The
red short uparrows ⇑ and downarrows ⇓ represent the amplification of
VRW by GW. The black short uparrow ⇑ and downarrow ⇓ represent
the amplification of GW by VRW.
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Fig. 5. Three-dimensional view of Fig 4.
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Fig. 6. Plan views of Fig 4 on z = 1(a), z = 1/2(b), and z = 0(c).
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Fig. 7. Structure of growing eigen-disturbance corresponding to the eigen-
value λM with the largest real part. The parameter values are set
f/Z = 0.02, γ = 0.006, and m = 2. Only the inside of twice the Rank-
ine radius is shown. (a) The disturbance potential vorticity q(left) and
disturbance horizontal divergence HD (right) on z = 1. (b) The distur-
bance vertical velocity w (left) and buoyancy b (right) on z = 1/2. (c)
The disturbance potential vorticity q (left) and disturbance horizontal
divergence HD (right) on z = 0.
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